Plant Molecular Biology

, Volume 25, Issue 1, pp 13–21 | Cite as

Chloroplast encoded thioredoxin genes in the red algae Porphyra yezoensis and Griffithsia pacifica: evolutionary implications

  • Ann E. Reynolds
  • Joby M. Chesnick
  • Joseph Woolford
  • Rose Ann Cattolico
Research Articles

Abstract

A gene encoding a thioredoxin protein was identified in the chloroplast genome of the rhodophyte Porphyra yezoensis. The P. yezoensis trxA gene contains 324 bp and is transcribed into a 0.7 kb messenger RNA. Analysis of the transcription start site demonstrates that canonical chloroplast −10 and −35 sequences are not present. The deduced amino acid sequence of the thioredoxin gene from the red algae has the greatest similarity to type m thioredoxins, providing strong support for the hypothesis that type m thioredoxins in photosynthetic eukaryotes originated from an engulfed bacterial endosymbiont. Hybridization analysis of nuclear and chloroplast DNAs from several members of the phyla Chromophyta and Rhodophyta using P. yezoensis DNA as a probe demonstrated strong hybridization to the chloroplast and nuclear genomes of Griffithsia pacifica and a weak cross-hybridization to the chromophyte P. foliaceum. The G. pacifica chloroplast gene has a 66% identity with the P. yezoensis DNA, contains conserved active site amino acid residues, but lacks a methionine start codon.

Key words

chloroplast evolution red algae thioredoxin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ausubel FM, Brent R, Kingston RE, Moore DD, Smith JA: Seidman JG, Struhl K: Current Protocols in Molecular Biology, pp. 2.5.1–2.5.3, 4.9.1–4.9.5. Greene Publishing Associates/Wiley Interscience, New York. (1987).Google Scholar
  2. 2.
    Baldauf SL, Palmer JD: Evolutionary transfer of the chloroplast tufA gene to the nucleus. Nature 344: 262–265 (1990).CrossRefPubMedGoogle Scholar
  3. 3.
    Baldauf SL, Manhart JR, Palmer JD: Different fates of the chloroplast tufA gene following its transfer to the nucleus in green algae. Proc Natl Acad Sci USA 87: 5317–5321 (1990).PubMedGoogle Scholar
  4. 4.
    Boczar BA, Delaney TP, Cattolico RA: Gene for the ribulose-1,5-bisphosphate carboxylase small subunit protein of the marine chromophyte Olisthodiscus luteus is similar to that of a chemoautotrophic bacterium. Proc Natl Acad Sci USA 86: 4996–4999 (1989).PubMedGoogle Scholar
  5. 5.
    Chesnick JM, Cattolico RA: Isolation of DNA from eukaryotic algae. Meth Enzymol, in press (1993).Google Scholar
  6. 6.
    Chomczynski P, Sacchi N: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloro-form extraction. Anal Biochem 162: 156–159 (1987).CrossRefPubMedGoogle Scholar
  7. 7.
    Christensen T: Alger. In: Bocher TW, Lange M, Sorensen T (eds) Systematik Botanik, vol. 2, pp. 128–146. Munksgaard, Copenhagen (1962).Google Scholar
  8. 8.
    Church GM, Gilbert W: Genomic sequencing. Proc Natl Acad Sci USA 81: 1991–1995 (1984).PubMedGoogle Scholar
  9. 9.
    Douglas SE, Murphy CA, Spencer DF, Gray MW: Cryptomonad algae are evolutionary chimeras of two phylogenetically distince unicellular eukaryotes. Nature 350: 148–151 (1991).CrossRefPubMedGoogle Scholar
  10. 10.
    Eklund H, Gleason FK, Holmgren A: Structural and functional relations among thioredoxins of different species. Proteins Structure Function Genet 11: 13–28 (1991).Google Scholar
  11. 11.
    Gleason FK, Whittaker MM, Holmgren A, Jornvall H: The primary structure of thioredoxin from the filamentous cyanobacterium Anabaena 7119. J Biol Chem 260: 9567–9573 (1985).PubMedGoogle Scholar
  12. 12.
    Gold L, Stormo G: Translational Initiation. In: Neidthardt FC (ed) Escherichia coli and Salmonella typhimurium, pp. 1302–1307. American Society for Microbiology, Washington DC (1987).Google Scholar
  13. 13.
    Hardison LK, Boczar BA, Reynolds AE, Cattolico RA: A description of the Rubisco large subunit gene and its transcript in Olisthodiscus luteus. Plant Mol Biol 18: 595–599 (1992).PubMedGoogle Scholar
  14. 14.
    Hardison LK, Boczar BA, Cattolico RA: Characterization and evolutionary relationship of psbA from the marine chromophyte Heterosigma caterae. Plant Mol Biol, submitted.Google Scholar
  15. 15.
    Hartman H, Syvanen M, Buchanan BB: Contrasting evolutionary histories of chloroplast thioredoxins f and m. Mol Biol Evol 7: 247–254 (1990).PubMedGoogle Scholar
  16. 16.
    Hein J: Unified approach to alignment and phylogenies. Meth Enzymol 183: 626–645 (1990).PubMedGoogle Scholar
  17. 17.
    Holmgren A: Thioredoxin. 6: the amino acid sequence of the protein from E. coli B. Eur J Biochem 6: 475–484 (1968).PubMedGoogle Scholar
  18. 18.
    Holmgren A: Thioredoxin. Annu Rev Biochem 54: 237–271 (1985).CrossRefPubMedGoogle Scholar
  19. 19.
    Jacquot J-P, Stein M, Hodges M, Miginiac-Maslow M: PCR cloning of a nucleotide sequence coding for the mature part of Chlamydomonas reinhardtii thioredoxin Ch2. Nucl Acids Res 20: 617 (1992).PubMedGoogle Scholar
  20. 20.
    Kamo M, Tsugita A, Wiessner C, Wedel N, Bartling D, Hermann RG, Aguilar R, Gardet-Salvi L, Schurmann P: Primary structure of spinach chloroplast thioredoxin f: protein sequencing and analysis of complete cDNA clones for spinach chloroplast thioredoxin f. Eur J Biochem 182: 315–322 (1989).PubMedGoogle Scholar
  21. 21.
    Hung SD, Lin CM: Chloroplast promoters from higher plants. Nucl Acids Res 13: 7543–7549 (1985).PubMedGoogle Scholar
  22. 22.
    McIntosh L, Cattolico RA: Preservation of algal and higher plant ribosomal RNA integrity during extraction and electrophoretic quantitation. Anal Biochem 91: 600–612 (1978).PubMedGoogle Scholar
  23. 23.
    McLachlan J: Growth media-marine. In: Stein JR (ed) Handbook of Phycological Methods; Culture Methods and Growth Measurements, pp. 45–52. University Press, Cambridge (1973).Google Scholar
  24. 24.
    Maeda K, Tsugita A, Dalzoppo D, Vilbois F, Schurmann P: Further characterization and amino acid sewucnes of m-type thioredoxins from spinach chloroplasts. Eur J Biochem 154: 197–203 (1986).PubMedGoogle Scholar
  25. 25.
    Marcus F, Chamberlain SH, Chu C, Masiarz FR, Shin S, Yee BC, Buchanan BB: Plant thioredoxin h: an animal-like thioredoxin occurring in multiple cell compartments. Arch Biochem 287: 195–198 (1991).PubMedGoogle Scholar
  26. 26.
    Morden CW, Golden SS: Sequence analysis and phylogenetic reconstruction of the genes encoding the large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase from the chlorophyll b containing prokaryote Prochlorothrix hollandica. J Mol Evol 32: 379–395 (1991).PubMedGoogle Scholar
  27. 27.
    Reith M, Cattolico RA: Inverted repeat of Olisthodiscus luteus chloroplast DNA contains genes for both subunits of ribulose-1,5-bisphosphate carboxylase and the 32,000-dalton QB protein: phylogenetic implications. Proc Natl Acad Sci USA 83: 8599–8603 (1986).Google Scholar
  28. 28.
    Reith M, Munholland J: A high-resolution gene map of the chloroplast genome of the red alga Porphyra purpurea. Plant Cell 5: 465–475 (1993).CrossRefPubMedGoogle Scholar
  29. 29.
    Starr RC, Zeikus JA: UTEX: The culture collection of algae at the University of Texas at Austin. J Phycol 29 (Suppl) 91 (1993).CrossRefGoogle Scholar
  30. 30.
    Taylor FGR: The taxonomy of harmful marine phytoplankton. Giorn Bot Ital 126: 209–219 (1992).Google Scholar
  31. 31.
    Valentin K, Cattolico RA, Zetsche K: Phylogenetic origin of the plastids. In: Lewin R (ed) Organelle Evolution and Symbiosis, pp. 193–222. Chapman and Hall, NY/London (1993).Google Scholar
  32. 32.
    Wollman EE, d'Auriol L, Rimsky L, Shaw A, Jacquot J-P, Wingfield P, Graber P, Dessarps F, Robin P, Galibert F, Bertoglio J, Fradelizi D: Cloning and expression of a cDNA for human thioredoxin. J Biol Chem 263: 15506–15512 (1988).PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Ann E. Reynolds
    • 1
  • Joby M. Chesnick
  • Joseph Woolford
  • Rose Ann Cattolico
    • 1
    • 2
  1. 1.Botany DepartmentUniversity of WashingtonUSA
  2. 2.School of OceanographyUniversity of WashingtonUSA

Personalised recommendations