, Volume 85, Issue 1–3, pp 417–423 | Cite as

Assessing the risks of wind pollination from fields of genetically modified Brassica napus ssp. oleifera

  • A. M. Timmons
  • E. T. O'Brien
  • Y. M. Charters
  • S. J. Dubbels
  • M. J. Wilkinson


Intensive research over the past 10 years has produced many genetically-mofified lines of oilseed rape with market potential. Assessment of these lines in statutory trials prior to their release as cultivars is necessary, owing to concern over the likelihood of transgene escape from such crops. Here, we examine the movement of airborne pollen grains from oilseed rape fields and assess their capacity for long-range geneflow.

Pollen dispersal from isolated rape fields was monitored over two seasons and related to the distribution of fields and ‘feral’ (domesticated plants growing outside cultivations) populations of the crop in Tayside and North East Fife regions of Scotland. Airborne pollen density declined with distance and at 360 m was 10% of that at the field margin. Pollen counts of 0–22 pollen grains m3 were observed 1.5 km from source fields and apparently were sufficient in number to allow seed set on emasculated bait plants. Oilseed rape pollen has greater capacity for long-range dispersal than had been suggested by small-scale field trials. Mean separation of oilseed rape fields in the survey area was 410 m and the mean distance from ‘feral’ populations to commercial fields was 700 m. Sixty percent of ‘feral’ populations with more than 10 plants occurred downwind and within 2 km of an oilseed rape field. Provided that the flowering biology of genetically-modified oilseed rape does not differ from the conventional crop, these data suggest that transgene movement to non genetically-modified fields or ‘feral’ populations is likely following commercial release.

Key words

gene flow transgene pollen movement genetically modified oilseed rape wind pollination risk assessment feral populations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anonymous, 1993. Food and Agriculture organization of the United Nations, Rome. F.A.O. statistics, series no. 112.Google Scholar
  2. Amoldo M., C.L. Baszczynski G. Bellemare, G. Brown, J. Carlson, B. Gillespie, B. Huang, N. MacLean, W.D. MacRae, G. Rayner, S. Rozakis, M. Westecott & R.J. Kemble, 1992. Evaluation of transgenic canola plants under field conditions. Genome 35: 58–63.Google Scholar
  3. Altenbach S.B., C.C. Kuo, L.C. Staraci, K.W. Pearson, C. Wainright, A. Georgescu & J. Townsend, 1992. Accumulation of a Brazil nut albumin in seeds of transgenic canola results in enhanced levels of seed protein methionine. Plant Molec. Biol. 18: 235–245.CrossRefGoogle Scholar
  4. Becker, H.C., B. Karlsson & C. Damgaard, 1990. Genotype and environmental variation for outcrossing rate in rapeseed. In: Rapeseed in a changing world. (Proc. 5) GCIRC 8th Intermational rapeseed conference.Google Scholar
  5. Chasseray, E. & J. Duesling, 1992. Field trials of transgenic plants: an overview. AGRO Food Industry hi-tech July/Aug. 1992: 5–10.Google Scholar
  6. Chevre, A., M. Renard, F. Eber, P. Vallee, M. Deschamps & M.C. Kerlan, 1992. Study of spontaneous hybridization between malesterile rapeseed and weeds. In: Reproductive biology and plant breeding. Book of poster abstracts, XIIIth Eucarpia Congress, 67–68.Google Scholar
  7. Crawley M.J., R.S. Haus, M. Rees, D. Kolin & J. Buxton, 1993. Ecology of transgenic oilseed rape in natural habitats. Nature 363: 620–623.CrossRefGoogle Scholar
  8. Dale P.J., J.A. Irwin & J.A. Scheffler, 1993. The experimental and commercial release of transgenic crop plants. Plant Breeding 111: 1–22.CrossRefGoogle Scholar
  9. Darmency, H., E. Lefol & R. Chadoeuf, 1992. Risk assessment of the release of herbicide resistant transgenic crops: two plant models. In: ANPP annales 1992. IXth Intermational Symposium on the Biology of Weeds, 513–523.Google Scholar
  10. De Greef W., R. Delon, M.De Block, J. Leemans & J. Botterman, 1989. Evaluation of herbicide resistance in transgenic crops under field conditions. Biotechnology 7: 61–64.CrossRefGoogle Scholar
  11. Eenink A.N., 1974. Matromorphy in Brassica oleracea L. I. Terminology, parthenogenesis in Cruciferae and the formation of matromorphic plants. Euphytica 23: 429–433.CrossRefGoogle Scholar
  12. Free J.B., 1970. Insect pollination of crops. Academic Press, London.Google Scholar
  13. Free J.B., 1993. Insect pollination of crops (2nd Edition). Academic Press. London.Google Scholar
  14. Free J.B. & P.M. Nuttall, 1968. The pollination of oilseed rape (Brassica napus) and the behaviour of bees on the crop. J. Agric. Sci., Camb. 71: 91–94.Google Scholar
  15. Gressel J. & G. Ben-Sinai, 1985. Low intraspecific competitive fitness in a triazine-resistant, nearly isogenic line of Brassica napus. Plant Sci. 38: 29–32.CrossRefGoogle Scholar
  16. Harle A., 1948. Ist der Rapsglanzkafer (Meligethes aeneus Fabr.) nur ein Schadling? Nachrichtenblass für den Deutschen. Pflanzenschutzdienst Berlin 2: 40–42.Google Scholar
  17. Hirst J.M., 1952. An automatic volumetric spore trap. Ann. Appl. Biol. 39: 257–265.CrossRefGoogle Scholar
  18. Huhn M. & G. Rakow, 1979. Einige experimentelle Ergebnisse zur Fremdfruchtungsrate bei Winterraps (Brassica napus oleifera) in Abhängigkeit von Sorte und Abastand. Z. Pflanzenzüchtg. 83: 289–307.Google Scholar
  19. Jenkinson J.D. & G.D. Glynne-Jones, 1953. Observations on the pollination of oil rape and broccoli. Bee World 34: 173–177.Google Scholar
  20. Kapteijns A.J.A.M., 1993. Risk assessment of genetically modified crops. Potential of four arable crops to hybridize with the wild flora. Euphytica 66: 145–149.CrossRefGoogle Scholar
  21. Langridge D.F. & R.D. Goodman, 1982. Honeybee pollination of oilseed rape, cultivar Midas. Aust. J. Exp. Agric. Anim. Husbrandry 22: 124–126.CrossRefGoogle Scholar
  22. Lefol, E., V. Danielou, H. Darmency, M.-C. Kerlan, P. Vallee, A.-M. Chevre, M. Renard & X. Reboud, 1991. Escape of engineered genes from rapeseed to wild Brassiceae. In: Proceedings of the British Crop Protection Conference on Weeds, 1049–1056.Google Scholar
  23. Levin D.A. & H.W. Kerster, 1974. Gene flow in seed plants. Evolutionary Biology 7: 139–220.Google Scholar
  24. Mackay G.R., 1972. On the genetic status of maternals induced by pollination of Brassica oleracea L. with Brassica campestris L. Euphytica 21: 71–77.CrossRefGoogle Scholar
  25. Mackay G. & R. Low, 1974. Spontaneous triploids in forage kale, Brassica oleracea var. acephala. Euphytica 24: 525–529.CrossRefGoogle Scholar
  26. McCartney H.A. & M.E. Lacey, 1990. The production and release of ascospores of Pyrenopeziza brassicae Sutton et Rawlinson on oilseed rape. Plant Pathology 39: 17–32.CrossRefGoogle Scholar
  27. McCartney H.A. & M.E. Lacey, 1991. Wind dispersal of pollen from crops of oilseed rape (Brassica napus L.). J. Aerosol. Sci. 22 (4): 467–477.CrossRefGoogle Scholar
  28. McCartney H.A., M.E. Lacey & C.J. Rawlinson, 1986. Dispersal of Pyrenopeziza brassicae spores from an oilseed rape crop. J. Agric. Sci. Camb. 107: 299–305.Google Scholar
  29. Manasse R., 1992. Ecological risks of transgenic plants: effects of spatial dispersion on gene flow. Ecological Applications 2 (4): 431–438.CrossRefGoogle Scholar
  30. Manasse R. & P. Kareiva, 1991. Quantifying the spread of recombinant genes and organisms. In: L. Ginzburgh (Ed.). Assessing Ecological Risks of Biotechnology, pp. 215–231. Butterworth-Heinemann, Boston.Google Scholar
  31. Mariana C., M.De Beuckheleer, J. Truettner, J. Leemans & R. Goldberg, 1990. Induction of male sterility in plants by a chimaeric ribonuclease gene. nature 347: 737–741.CrossRefGoogle Scholar
  32. Mariani, C., W. De Greef, M. De Block, M. De Beuckeleer, V. Gossele & J. Leemans, 1991. Genetic analysis of engineered sterility in oilseed rape. In: D.I. McGregor ({edEd.}). Proc. of the GCIRC Eighth International Rapeseed Congress, pp. 352–357. Saskatchewan.Google Scholar
  33. Mariani C., V. Gossele, M.De Beuckeleer, M.De Block, R.B. Goldberg, W.De Greef & J. Leemans, 1992. A chimaeric ribonucleaseinhibitor gene restores fertility to male sterile plants. Nature 357: 384–387.CrossRefGoogle Scholar
  34. Mesquida J. & M. Reynard, 1982. Étude de la dispersion du pollen par le vent et de l'importance de la pollinisation anémophile chez le colza (Brassic napus L., var. oleifera Metzger). Apidologie 13: 353–366.CrossRefGoogle Scholar
  35. Miki B.L., H. Labbe, J. Hattori, T. Ouellet, J. Gabard, G. Sunohara & P.J. Charest, 1990. Transformation of Brassica napus canola cultivars with Arabidopsis thaliana acetohydroxyacid synthase genes and analysis of herbicide resistance. Theor. Appl. Genet. 80: 449–458.CrossRefGoogle Scholar
  36. Misra S. & L. Gedamu, 1989. Heavy metal tolerant transgenic Brassica napus L. and Nicotania tabacum L. plants. Theor. Appl. Genet. 78: 161–168.CrossRefGoogle Scholar
  37. Morinaga T. & E. Fukushima, 1933. Karyological studies on a spontaneous haploid mutant of Brassica napella. Cytologia 4: 457–460.Google Scholar
  38. Olsson G., 1952. Undersökning av graden av korsbefruktning hos vitesnap och raps. Sveriges Utsädesförenings Tidskrift 62: 311–322.Google Scholar
  39. Olsson G., 1960. Self-incompatability and outcrossing in rape and white mustard. Hereditas 46: 241–252.CrossRefGoogle Scholar
  40. Olsson G. & B. Persson, 1958. Inkorsningsgrad och sjalvstorilitet hos raps. Sveriges Utsädesförenings, Tidskrift 68: 74–78.Google Scholar
  41. Ooms G., A. Bains, M. Burrell, A. Karp, D. Twell & E. Wilcox, 1985. Genetic Manipulation in cultivars of oilseed rape (Brassica napus) using agrobacterium. Theor. Appl. Genet. 71: 325–329.Google Scholar
  42. Prakash S. & K. Hinata, 1980. Taxonomy, cytogenetics and origin of crop brassicas, a review. Opera Botanica 55: 25–26.Google Scholar
  43. Rakow G. & D.L. Woods, 1987. Outcrossing in rape and mustard under Saskatchewan prairie conditions. Can. J. Plant Sci. 67: 147–151.CrossRefGoogle Scholar
  44. Raybould A.F. & A.J. Gray, 1993. Genetically modified crops and hybridization with wild relatives: a UK perspective. J. Appl. Ecol. 30: 199–219.CrossRefGoogle Scholar
  45. Scheffler J.A., R. Parkinson & P.J. Dale, 1993. Frequency and distance of pollen dispersal from transgenic oilseed rape (Brassica napus). Transgenic Research 2: 356–364.CrossRefGoogle Scholar
  46. Stace C.A., 1975. Hybridization and the flora of the British Isles. Academic Press, London.Google Scholar
  47. Stringham G.R. & R.K. Downey, 1973. Haploid frequencies in Brassica napus. Can. J. Plant Sci. 53: 229–231.Google Scholar
  48. Thompson K.F., 1969. Frequencies of haploids in spring oilseed rape (Brassica napus). Heredity 24: 318–319.CrossRefGoogle Scholar
  49. Tokumasu S., 1970. Studies on pseudogamy in the case of tetraploid plants in Raphanus. Jap. J. Breed. 20 (1): 15–21.Google Scholar
  50. U., N., 1935. Genome analysis in Brassica with special reference to experimental formation of B. napus and peculiar mode of fertilisation. Jap. J. Bot. 7: 389–452.Google Scholar
  51. Williams I.H., 1978. The pollination requirements of swede rape (Brassica napus L.) and of turnip rape (Brassica campestris L.). J. Agric. Sci. Camb. 91: 343–348.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • A. M. Timmons
    • 1
  • E. T. O'Brien
    • 1
  • Y. M. Charters
    • 1
  • S. J. Dubbels
    • 1
  • M. J. Wilkinson
    • 1
  1. 1.Scottish Crop Research InstituteDundeeScotland, U.K.

Personalised recommendations