, Volume 85, Issue 1–3, pp 367–372 | Cite as

Conservation of marker synteny during evolution

  • Katrien M. Devos
  • Graham Moore
  • Michael D. Gale


An aspect of cereal science that is becoming increasingly important is comparative genetics. Establishment of the relationship between genomes within polyploids, between species within tribes and between species within families will allow not only the integration of genetic maps but also the knowledge acquired of each of the species. Using a set of homoeologous probes, workers found the relationship between the three wheat genomes to be precisely collinear, after taking a few major translocation events into account. Transfer of the wheat map to rye led to the elucidation of similar relationships between the three wheat genomes and that of rye. Genome collinearity, however, extends even beyond tribes. In a comparison of the genomes of wheat, rice and maize, it was shown that despite the separation of these genomes for possibly 50 million years, gene order was still highly conserved. This collinearity between genomes can be exploited in a number of ways.

Key words

collinearity comparative mapping Poaceae Triticeae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahn S., J.A. Anderson, M.E. Sorrels & S.D. Tanksley, 1993. Homoeologous relationships of rice, wheat and maize chromosomes. Mol. & Gen. Genet. 241: 483–490.CrossRefGoogle Scholar
  2. Ahn S. & S.D. Tanksley, 1993. Comparative linkage maps of the rice and maize genomes. Proc. Nat. Acad. Sci. 90: 7980–7984.PubMedCrossRefGoogle Scholar
  3. Berhan A.M., S.H. Hulbert, L.G. Butler & J.L. Bennetzen, 1993. Structure and evolution of the genomes of Sorghum bicolor and Zea mays. Theor. Appl. Genet. 86: 598–604.CrossRefGoogle Scholar
  4. Burr B., F.A. Burr & E.C. Matz, 1993. Maize molecular map (Zea mays) 2N=20. In: S.J. O'Brien (Ed). Genetic maps, pp. 190–203. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.Google Scholar
  5. Coe E.H. & M.G. Neuffer, 1993. Gene loci and linkage map of corn (maize) (Zea mays) (2N=20). In: S.J. O'Brien (Ed). Genetic maps, pp. 157–189. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.Google Scholar
  6. Devos K.M., M.D. Atkinson, C.N. Chinoy, R.L. Harcourt, R.M.D. Koebner, C.J. Liu, P. Masojc, D.X. Xie & M.D. Gale, 1993a. Chromosome rearrangements in the rye genome relative to that of wheat. Theor. Appl. Genet. 85: 673–680.CrossRefGoogle Scholar
  7. Devos K.M., T. Millan & M.D. Gale, 1993b. Comparative RFLP maps of the homoeologous group 2 chromosomes of wheat, rye and barley. Theor. Appl. Genet. 85: 784–792.Google Scholar
  8. Devos K.M., S. Chao, Q.Y. Li, M.C. Simonetti & M.D. Gale, 1994. Relationship between chromosome 9 of maize and wheat homoeologous group 7 chromosomes. Genetics. 138: 1287–1292.PubMedGoogle Scholar
  9. Gale M.D., M.D. Atkinson, C.N. Chinoy, R.L. Harcourt, J. Jiu, Q.Y. Li & K.M. Devos, 1995. Genetic maps of hexaploid wheat.In: Z.S. Li & Z.Y. Xin (Eds). Proc. 8th Int. Wheat Genet. Symp., pp. 29–40. China Agricultural Scientech Press, Beijing.Google Scholar
  10. Graner A., A. Jahoor, J. Schondelmaier, H. Siedler, K. Pillen, G. Fischbeck, G. Wenzel & R.G. Herrmann, 1991. Construction of an RFLP map of barley. Theor. Appl. Genet. 83: 250–256.CrossRefGoogle Scholar
  11. Heun M., A.E. Kennedy, J.A. Anderson, N.L.V. Lapitan, M.E. Sorrells & S.D. Tanksley, 1991. Construction of an FRLP map for barley (Hordeum vulgare L.). Genome 34: 437–447.Google Scholar
  12. King I.P., K.A. Purdie, C.J. Liu, S.M. Reader, S.E. Orford, T.S. Pittaway & S.D. Miller, 1994. Detection of interchromosomal translocations within the Triticeae by RFLP analysis. Genome 37: 882–887.PubMedGoogle Scholar
  13. Kleinhofs A., A. Kilian, M.A. Saghai Maroof, R.M. Biyashev, P. Hayes, F.Q. Chen, N. Lapitan, A. Fenwick, T.K. Blake, V. Kanazin, E. Ananiev, L. Dahleen, D. Kudma, J. Bollinger, S.J. Knapp, B. Liu, B. Sorrells, M. Heun, J.D. Franckowiak, D. Hoffman, R. Skadsen & B.J. Steffenson, 1993. A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor. Appl. Genet. 86: 705–712.CrossRefGoogle Scholar
  14. Kochert G. & K.K. Jena, 1993. RFLP linkage map of Oryza officinalis, a wild rice (2n=2x=24). In: S.J. O'Brien (Ed). Genetic maps, pp. 80–81. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.Google Scholar
  15. Kurata N., G. Moore, Y. Nagamura, T. Foote, M. Yano, Y. Minobe & M. Gale, 1994. Conservation of genome structure between rice and wheat. Bio/Technology 12: 276–278.CrossRefGoogle Scholar
  16. Laurie D.A., N. Pratchett, K.M. Devos, I.J. Leitch & M.D. Gale, 1993. The distribution of RFLP markers on chromosome 2 (2H) of barley in relation to the physical and genetic location of 5S rDNA. Theor. Appl. Genet. 83: 305–312.Google Scholar
  17. Liu C.J., K.M. Devos, C.N. Chinoy, M.D. Atkinson & M.D. Gale, 1992. Non-homoeologous translocations between group 4,5 and 7 chromosomes in wheat and rye. Theor. Appl. Genet. 83: 305–312.CrossRefGoogle Scholar
  18. Melz G., R. Schlegel & V. Thiele, 1992. Genetic linkage map of rye (Secale cereale L.). Theor. Appl. Genet. 85: 33–45.CrossRefGoogle Scholar
  19. Miller T.E., 1984. The homoeologous relationship between the chromosomes of rye and wheat. Current status. Can. J. Genet. Cytol. 26: 578–589.Google Scholar
  20. Naranjo T., A. Roca, P.G. Goicoechea & R. Giraldez, 1987. Arm homoeology of wheat and rye chromosomes. Genome 29: 873–882.Google Scholar
  21. Naranjo T. & P. Fernández-Rueda, 1991. Homoeology of rye chromosome arms to wheat. Theor. Appl. Genet. 82: 577–586.CrossRefGoogle Scholar
  22. Tanksley S.D., T.M. Fulton & S.R. McCouch, 1993. Linkage map of rice (Oryza sativa) (2N=24). In: S.J. O'Brien (Ed). Genetic maps, pp. 61–79. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.Google Scholar
  23. Whitkus R., J. Doebley & M. Lee, 1992. Comparative genome mapping of sorghum and maize. Genetics 132: 1119–1130.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Katrien M. Devos
    • 1
  • Graham Moore
    • 1
  • Michael D. Gale
    • 1
  1. 1.Cambridge Laboratory, John Innes CentreNorwich Research ParkNorwichU.K.

Personalised recommendations