Euphytica

, Volume 85, Issue 1–3, pp 173–180 | Cite as

Synergistic activity of chitinases and β-1,3-glucanases enhances fungal resistance in transgenic tomato plants

  • Erik Jongedijk
  • Henk Tigelaar
  • Jeroen S. C. van Roekel
  • Sandra A. Bres-Vloemans
  • Ilma Dekker
  • Peter J. M. van den Elzen
  • Ben J. C. Cornelissen
  • Leo S. Melchers
Article

Summary

Simultaneous expression of a tobacco class I chitinase and a class I β-1,3-glucanase gene in tomato resulted in increased fungal resistance, whereas transgenic tomato plants expressing either one of these genes were not protected against fungal infection. After infection with Fusarium oxysporum f.sp. lycopersici, a 36% to 58% reduction in disease severity was observed in resistant tomato lines. Two transgenic lines largely recovered from the initial infection by the time wild-type tomato plants had died.

The overall results are consistent with the observation that class I chitinases and class I β-1,3-glucanases synergistically inhibit the growth of fungi in vitro and provide the first experimental support to the hypothesis that such synergy can contribute to enhanced fungal resistance in planta.

Key words

Lycopersicon esculentum tomato endochitinases β-1,3-endoglucanases fungal resistance transgenic plants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander D., R.M. Goodman, M. Gut-Rella, C. Glascock, K. Weymann, L. Friedrich, D. Maddox, P. Ahl-Goy, T. Luntz, E. Ward & J.A. Ryals, 1993. Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1 a. Proc. Natl. Acad. Sci. USA 90: 7327–7331.PubMedCrossRefGoogle Scholar
  2. Broglie K., I. Chet, M. Holliday, R. Cressman, P. Biddle, S Knowlton, C.J. Mauvais & R. Broglie, 1991. Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254: 1194–1197.PubMedCrossRefGoogle Scholar
  3. Collinge D.B., K.M. Kragh, J.D. Mikkelsen, K.K. Nielsen, U. Rasmussen & K. Ved, 1993. Plant chitinases. The Plant Journal 3: 31–40.PubMedCrossRefGoogle Scholar
  4. Cornelissen B.J.C. & L.S. Melchers, 1993. Strategies for control of fungal diseases in plants. Plant Physiol. 101: 709–712.PubMedGoogle Scholar
  5. Hain R., H.J. Reif, E. Krause, R. Langebartels, H. Kindl, B. Vornam, W. Wiese, E. Schmeltzer, P.H. Schreier, R.H. Stöcker & K. Stenzel, 1993. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361: 153–156.PubMedCrossRefGoogle Scholar
  6. Hood E.E., S.B. Gelvin, L.S. Melchers & A. Hoekema, 1993. New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Research 2: 208–218.CrossRefGoogle Scholar
  7. Joosten M.H.A.J. & P.J.G.M.de Wit, 1989. Identification of several pathogenesis-related proteins in tomato leaves inoculated with Cladosporium fulvum (syn. Fulvia fulva) as 1,3-β-glucanases and chitinases. Plant Physiology 89: 945–951.PubMedCrossRefGoogle Scholar
  8. Kalloo G. & B.O. Bergh, 1993. Genetic Improvement of Vegetable Crops. Pergamon Press Ltd., Oxford.Google Scholar
  9. Koorneef M., J.A.M.van Diepen, C.J. Hanhart, A.C. Kieboomde Waard, L. Martinelli, H.C.H. Schoenmakers & J. Wijbrandi, 1989. Chromosomal instability in cell and tissue cultures of tomato haploids and diploids. Euphytica 43: 179–186.CrossRefGoogle Scholar
  10. Lamb C.J., J.A. Ryals, E.R. Ward & R.A. Dixon, 1992. Emerging strategies for enhancing crop resistance to microbial pathogens. Bio/Technology 10: 1436–1445.PubMedCrossRefGoogle Scholar
  11. Leah R., H. Tommerup, I. Svendsen & J. Mundy, 1991. Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J. Biol. Chem. 266: 1464–1573.Google Scholar
  12. Logemann J., G. Jach, H. Tommerup, J. Mundy & J. Schell, 1992. Expression of a barley ribosome-inactivating protein leads to increased fungal protection in transgenic tobacco plants. Bio/Technology 10: 305–308.CrossRefGoogle Scholar
  13. Logemann J., G. Jach, S. Logemann, R. Leah, G. Wolf, J. Mundy, A. Oppenheim, I. Chet & J. Schell, 1993. Expression of a ribosome inhibiting protein (RIP) or a bacterial chitinase leads to fungal resistance in transgenic plants. In: B. Fritig & M. Legrands (Eds) Mechanisms of plant defense responses. pp. 446–448. Kluwer Academic Publishers, Dordrecht.Google Scholar
  14. Mauch F., B. Mauch-Mani & T. Boller, 1988. Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase. Plant Physiol. 88: 936–942.PubMedCrossRefGoogle Scholar
  15. Melchers L.S., M.B. Sela-Buurlage, S.A. Vloemans, C.P. Woloshuk, J.S.C.van Roekel, J. Pen, P.J.M.van den Elzen & B.J.C. Comelissen, 1993. Extracellular targeting of vacuolar tobacco proteins AP24, chitinase and β-1,3-glucanase in transgenic plants. Plant Molec. Biol. 21: 583–593.CrossRefGoogle Scholar
  16. Melchers L.S., M. Aphotheker-de Groot, J.A.van der Knaap, A.s. Ponstein, M.B. Sela-Buurlage, J.F. Bol, B.J.C. Cornelissen, P.J.M.van der Elzen & H.J.M. Linthorst, 1994. A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activity. The Plant Journal 5: 469–480.PubMedCrossRefGoogle Scholar
  17. Neuhaus J.M., P. Ahl-Goy, U. Hinz, S. Flores & F. Meins, 1991. High level expression of a tobacco chitinase gene in Nicotiana sylvestris. Susceptibility of transgenic plants to Cercospora nicotianae infection. Plant Molec. Biol. 16: 141–151.CrossRefGoogle Scholar
  18. Poehlman J.M., 1987. Breeding Field Crops. Van Nostrand Reinhold Publishers, New York, third edition.Google Scholar
  19. Ponstein A.P., S.A. Bres-Vloemans, M.B. Sela-Buurlage, P.J.M.van den Elzen, L.S. Melchers & B.J.C. Comelissen, 1993. A novel pathogen and wound-inducible tobacco protein with antifungal activity. Plant Physiol. 104: 109–118.CrossRefGoogle Scholar
  20. Sela-Buurlage M.B., A.S. Ponstein, S.A. Bres-Vloemans, L.S. Melchers, P.J.M.van den Elzen & B.J.C. Cornelissen, 1993. Only specific tobacco (Nicotiana tabacum) chitinases and β-1,3-glucanases exhibit antifungal activity. Plant Physiol. 101: 857–863.PubMedGoogle Scholar
  21. Sijmons P.C., B.M.M. Dekker, B. Schrammeijer, T.C. Verwoerd, P.J.M.van den Elzen & A. Hoekema, 1990. Production of correctly processed human serum albumin in transgenic plants. Bio/Technology 8: 217–221.PubMedCrossRefGoogle Scholar
  22. Strittmatter G. & D. Wegener, 1993. Genetic engineering of disease and pest resistance in plants: present state of the art. Z. Naturforsch. 48c: 673–688.Google Scholar
  23. Tuzun S., M.N. Rao, U Vogeli, C.L. Schardl & J. Kuc, 1989. Induced systemic resistance to blue mold: early induction and accumulation of β-1,3-glucanases, chitinases and other pathogenesis-related proteins in immunized tobacco. Phytopathology 79: 979–983.CrossRefGoogle Scholar
  24. Van den Elzen P.J.M., E. Jongedijk, L.S. Melchers & B.J.C. Cornelissen, 1993. Virus and fungal resistance: from laboratory to field. Phil. Trans. R. Soc. Lond. B 342: 271–278.CrossRefGoogle Scholar
  25. Van Roekel J.S.C., B. Damm, L.S. Melchers & A. Hoekema, 1993. Factors influencing transformation frequency of tomato (Lycopersicon esculentum). Plant Cell Reports 12: 644–647.CrossRefGoogle Scholar
  26. Vogelsang R. & W. Barz, 1993. Purification, characterization and differential hormonal regulation of a β-1,3-glucanase and two chitinases from chickpea (Cicer arientinum L.). Planta 189: 60–69.PubMedCrossRefGoogle Scholar
  27. Ward E.R., G.B. Payne, M.B. Moyer, S.C. Williams, S.S. Dincher, K.C. Sharkey, J.H. Beck, H.T. Taylor, P. Ahl-Goy, F. Meins & J.A. Ryals, 1991. Differential regulation of β-1,3-glucanse messenger RNAs in response to pathogen infection. Plant Physiol. 96: 390–397.PubMedCrossRefGoogle Scholar
  28. Weide R., M. Koorneef & P. Zabel, 1989. A simple nondestructive spraying assay for the detection of an active kanamycin resistance gene in transgenic tomato plants. Theor. Appl. Genet. 78: 169–172.CrossRefGoogle Scholar
  29. Wessels J.G.H. & J.H. Sietsma, 1981. Fungal cell walls: a survey. In: W. Tanner & F.A. Loewus (Eds) Encyclopedia of Plant Physiology, new series, vol. 13B: Plant carbohydrates, pp. 352–394. Springer Verlag, Berlin.Google Scholar
  30. Yenofsky R.L., M. Fine & J.W. Pellow, 1990. A mutant neomycin phosphotransferase II gene reduces the resistance of transformants to antibiotic selection pressure. Proc. Natl. Acad. Sci. USA 87: 3435–3439.PubMedCrossRefGoogle Scholar
  31. Zu Q., E.A. Maher, S. Masoud, R.A. Dixon & C. Lamb, 1994. Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Bio/Technology 12: 807–812.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Erik Jongedijk
    • 1
  • Henk Tigelaar
    • 1
  • Jeroen S. C. van Roekel
    • 1
  • Sandra A. Bres-Vloemans
    • 1
  • Ilma Dekker
    • 1
  • Peter J. M. van den Elzen
    • 1
  • Ben J. C. Cornelissen
    • 2
  • Leo S. Melchers
    • 1
  1. 1.MOGEN International nvLeidenThe Netherlands
  2. 2.Institute for Molecular Cell BiologyBiocentrum AmsterdamAmsterdamThe Netherlands

Personalised recommendations