, Volume 63, Issue 1–2, pp 141–152 | Cite as

Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley

  • I. Helms Jørgensen


Mlo resistance to barley powdery mildew is a relatively new kind of resistance. It was originally described in a powdery mildew resistant barley mutant in 1942 and has been mutagen-induced repeatedly since then. About 1970 it was also recognized in barley landraces collected in Ethiopia in the 1930s. It is unique in that 1) Mlo resistance does not conform to the gene-for-gene system; 2)mlo genes originating from different mutational events map as non-complementing recessive alleles in one locus; 3) all alleles confer the same phenotype, though with small quantitative differences; 4) it is effective against all isolates of the pathogen; and 5) the resistance is caused by rapid formation of large cell wall appositions at the encounter sites preventing penetration by the fungus. Powdery mildew isolates with elevated Mlo aggressiveness have been produced on barley in the laboratory, but have not been found in nature. Mlo resistance is considered very durable. The exploitation of Mlo resistance has been hampered by pleiotropic effects of themlo genes, vix. necrotic leaf spotting and reduced grain yield, but they have been overcome by recent breeding work. During the 1980s Mlo-resistant spring barley varieties have become cultivated extensively in several European countries, in 1990 on about 700,000 ha.

Key words

barley disease resistance Erysiphe graminis hordei Hordeum vulgare 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aist, J.R. & R.E., Gold, 1987. Prevention of fungal ingress: The role of papillae and calcium. Japan Sci. Soc. Press, Tokyo/Springer-Verlag, Berlin, pp. 47–58.Google Scholar
  2. Aist, J.R., R.E., Gold, C.J., Bayles, G.H., Morrison, S., Chandra & H.W., Israel, 1988. Evidence that molecular components of papillae may be involved in Ml-o resistance to barley powdery mildew. Physiol. Mol. Plant Pathol. 33: 17–32.Google Scholar
  3. Andersen, L., 1991. Mlo aggressiveness in European barley powdery mildew. In: J. Helms, Jørgensen (Ed.), Integrated Control of Cereal Mildews: Virulence Patterns and Their Change. Risø National Laboratory, Roskilde, pp. 187–196.Google Scholar
  4. Andersen, L. & J.H. Jørgensen, 1992. Mlo aggressiveness of barley powdery mildew. Norwegian J. Agric. Sci. Suppl. No. 7: 77–87.Google Scholar
  5. Bayles, C.J. & J.R., Aist, 1987. Apparent calcium mediation of resistance of anml-o barley mutant to powdery mildew. Physiol. Mol. Plant Pathol. 30: 337–345.Google Scholar
  6. Bayles, C.J., M.S., Ghemawat & J.R., Aist, 1990. Inhibition by 2-deoxy-D-glucose of callose formation, papilla deposition, and resistance to powdery mildew in anml-o barley mutant. Physiol. Mol. Plant Pathol. 36: 63–72.Google Scholar
  7. Bjørnstad, Å. & K., Aastveit, 1990. Pleiotropic effects on theml-o mildew resistance gene in barley in different genetical backgrounds. Euphytica 46: 217–226.Google Scholar
  8. Czembor, H.J. & E., Gacek, 1991. Development of high-yielding and disease-resistant barley cultivars through combination of mutagenesis with conventional cross-breeding. Cereal Res. Comm. 19: 43–49.Google Scholar
  9. Fischbeck, G., 1992. Barley cultivar development in Europe-success in the past and possible changes in the future. In: L., Munck (Ed.), Barley Genetics VI, vol. 2, Munksgård Intern Publ., Copenhagen, pp. 885–901.Google Scholar
  10. Gabler, J. & H., Fritsche, 1991. Ergebnisse der Virulenzanalyse 1987–1990 bei Gerstenmehltau auf dem Teritorium der östlichen Bundesländer. Vortr. Pflanzenzüchtg. 19: 317–318.Google Scholar
  11. Giessen, J.E., W., Hoffmann & R., Schottenloher, 1956. Die Gersten Äthiopiens und Erythräas. Z. Pflanzenzüchtg. 35: 377–440.Google Scholar
  12. Hänsel, H., 1971. Experience with a mildew-resistant mutant (mut. 3502) of ‘Volkorn’ barley induced in 1952. In: Mutation Breeding for Disease Resistance, IAEA-PL-412/13, pp. 125–129.Google Scholar
  13. Hentrich, W., 1979. Multiple Allelie, Pleiotropie und züchterische Nutzung mehltauresistenter Mutanten des mlo-Locus der Gerste. Tag Ber., Akad. Landwirtsch.-Wiss., DDR, Berlin 175: 191–202.Google Scholar
  14. Hentrich, W. & A., Habekuss, 1991. Untersuchungen an heteroallelen mehltauresistenten Mutanten des mlo-Locus der Sommergerste. Vortr. Pflanzenzüchtg. 19: 311–312.Google Scholar
  15. Hinze, K., R.D., Thompson, E., Ritter, F., Salamini & P., Schulze-Lefert, 1991. RFLP-mediated targeting of theml-o resistance locus in barley (Hordeum vulgare). Proc. Nat. Acad. Sci. USA 88: 3691–3695.Google Scholar
  16. Hoffmann, W. & I., Nover, 1959. Ausgangsmaterial für die Züchtung mehltauresistenter Gersten. Z. Pflanzenzüchtg. 42: 68–78.Google Scholar
  17. Jørgensen, J.H., 1971. Comparison of induced mutant genes with spontaneous genes in barley conditioning resistance to powdery mildew. In: Mutation Breeding for Disease Resistance, IAEA-PL-412/12, pp. 117–124.Google Scholar
  18. Jørgensen, J.H., 1976. Identification of powdery mildew resistant barley mutants and their allelic relationship. In: Barley Genetics III, Karl Thiemig, München, pp. 446–455.Google Scholar
  19. Jørgensen, J.H., 1977. Spectrum of resistance conferred byml-o powdery mildew resistance genes in barley. Euphytica 26: 55–62.Google Scholar
  20. Jørgensen, J.H., 1984. Durability of theml-o powdery mildew resistance genes in barley. Vortr. Pflanzenzüchtg. 6: 22–31.Google Scholar
  21. Jørgensen, J.H., 1987. Three kinds of powdery mildew resistance in barley. In: Barley Genetics V, Okayama Univ. Press, 583–592.Google Scholar
  22. Jørgensen, J.H., 1988. Screening ofHordeum vulgare for powdery mildew resistance. Nordisk Jordbrugsforsk. 70: 529.Google Scholar
  23. Jørgensen, J.H., 1991. Mechanism of Mlo resistance to barley powdery mildew. Sveriges Utsädesförenings Tidsskrift 2: 45–50.Google Scholar
  24. Jørgensen, J.H. & H.P., Jensen, 1979. Inter-allelic recombination in theml-o locus in barley. Barley Genet. Newsl. 9: 37–39.Google Scholar
  25. Jørgensen, J.H. & K., Mortensen, 1977. Primary infection byErysiphe graminis f. sp.hordei of barley mutants with resistance genes in the ml-o locus. Phytopathol. 67: 678–685.Google Scholar
  26. Kjær, B., H.P., Jensen, J., Jensen & J.H., Jørgensen, 1990. Associations between threeml-o powdery mildew resistance genes and agronomic traits in barley. Euphytica 46: 185–193.Google Scholar
  27. Lundqvist, U., 1991. Swedish mutation research in barley with plant breeding aspects. A historical review. In: Plant Mutation Breeding for Crop Improvement, IAEA-SM-311/25, pp. 135–147.Google Scholar
  28. Meyer, H. & C.O., Lehmann, 1979. Resistenzeigenschaften im Gersten- und Weizensortiment Gatersleben. 22. Prüfung von Sommergersten auf ihr Verhalten gegen zwei neue Rassen von Mehltau (Erysiphe graminis DC. f. sp.hordei Marchal). Kulturpflanze 27: 181–188.Google Scholar
  29. Negassa, M., 1985a. Geographic distribution and genotypic diversity of resistance to powdery mildew of barley in Ethiopia. Hereditas 102: 113–121.Google Scholar
  30. Negassa, M., 1985b. Patterns of phenotypic diversity in an Ethiopian barley collection and the Arussi-Bale Highland as a center of origin of barley. Hereditas 102: 139–150.Google Scholar
  31. Nover, I., 1968. Eine neue, für die Resistenzzüchtung bedeutungsvolle Rasse vonErysiphe graminis DC. f. sp.hordei Marchal. Phytopath. Z. 62: 199–201.Google Scholar
  32. Nover, I., 1972. Untersuchungen mit einer für den Resistenzträger ‘Lyallpur 3645’ virulenten Rasse vonErysiphe graminis DC. f. sp.hordei Marchal. Arch. Pflanzenschutz 8: 439–445.Google Scholar
  33. Nover, I. & E., Schwarzbach, 1971. Inheritance studies with a mildew resistant barley mutant. Barley Genet. Newsl. 1: 36–37.Google Scholar
  34. Pedersen, L.H., 1990. 1,3-β-glucansynthetase activity and callose synthesis in barleymlo mutants and mother varieties. (Abstract no 582) Plant Physiol. 79: 102.Google Scholar
  35. Russo, V.M. & W.R., Bushnell, 1989. Responses of barley cells to puncture by microneedles and to attempted penetration byErysiphe graminis f. sp.hordei. Can. J. Bot. 67: 2912–2921.Google Scholar
  36. Röbbelen, G. & M. Heun, 1991. Genetic analysis of partial resistance against powdery mildew in induced mutants of barley. In: Plant Mutation Breeding for Crop Improvement, IAEA-SM-311/157, pp. 93–105.Google Scholar
  37. Schwarzbach, E., 1976. The pleiotropic effects of theml-o gene and their implications in breeding. In: Barley Genetics III, Karl Thiemig, München, pp. 440–445.Google Scholar
  38. Schwarzbach, E., 1979. Response to selection for virulence against theml-o based mildew resistance in barley, not fitting the gene-for-gene hypothesis. Barley Genet. Newsl. 9: 85–88.Google Scholar
  39. Schwarzbach, E., 1987. Shifts to increased pathogenecity onml-o varieties. In: M.S., Wolfe & E., Limpert (Eds.), Integrated Control of Cereal Mildews: Monitoring the Pathogen. Martinus Nijhoff Publishers, Dordrecht, pp. 5–7.Google Scholar
  40. Skou, J.P., 1985. On the enhanced callose deposition in barley withmlo powdery mildew resistance genes. Phytopath. Z. 112: 207–216.Google Scholar
  41. Skou, J.P., J.H., Jørgensen & U., Lilholt, 1984. Comparative studies on callose formation in powdery mildew compatible and incompatible barley. Phytopath. Z. 109: 147–168.Google Scholar
  42. Wolfe, M.S., 1992. Barley diseases: maintaining the value of our varieties. In: Munck (Ed.), Barley Genetics VI, vol. 2. Munksgård Intern. Publ., Copenhagen, pp. 1055–1067.Google Scholar
  43. Yamaguchi, I. & A., Yamashita, 1985. Induction of mutation for powdery mildew resistance in two-rowed barley. JARQ 18: 171–175.Google Scholar
  44. Yokoyama, K., J.R., Aist & C.J., Bayles, 1991. A papilla-regulating extract that induces resistance to barley powdery mildew. Physiol. and Mol. Plant Pathol. 39: 71–78.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • I. Helms Jørgensen
    • 1
  1. 1.Plant Biology Section, Environmental Science and Technology DepartmentRisø National LaboratoryRoskildeDenmark

Personalised recommendations