Advertisement

Euphytica

, Volume 53, Issue 2, pp 107–114 | Cite as

Minisatellite DNA ‘fingerprints’ can distinguish Rubus cultivars and estimate their degree of relatedness

  • Hilde Nybom
  • Harvey K. Hall
Article

Summary

Minisatellite DNA from 13 Rubus cultivars, including five raspberries, two R. flagellaris derivatives, three R. ursinus derivatives, and the three raspberry-blackberry hybrids Boysen, Logan Thornless and Young, was hybridized with the M13 probe yielding cultivar-specific DNA fragment profiles. Estimates of similarity, assessed from the fragment profiles, showed a strong association with the degree of genetic relatedness among the cultivars. Boysen was shown to be closely related to Austin Thornless, Logan and Young, and is thus thought to be of similar origin to Young, that is Austin Thornless x Phenomenal. While genetic relatedness of Creston with Lloyd George was suggested, Lloyd George parentage of Creston cannot be confirmed from the data obtained.

Key words

Rubus species raspberry blackberry cultivar identification M13 probe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey, L.H., 1941. Species batorum. The genus Rubus in North America I. Gentes Herb. 5: 1–64.Google Scholar
  2. Britton, D.M. & J.W. Hull, 1956. Mitotic instability in black-berry seedlings. J. Hered. 47: 205–210.Google Scholar
  3. Brown, S.W., 1943. The origin and nature of variability in the Pacific coast blackberries (R. ursinus Cham. & Schlecht. and R. lemurum sp. nov.). Amer. J. Bot. 30: 686–697.Google Scholar
  4. Cousineau, J.C. & D.J. Donnelly, 1989. Identification of raspberry cultivars in vivo and in vitro using isoenzyme analysis. HortScience 24: 490–492.Google Scholar
  5. Dallas, J.F., 1988. Detection of DNA ‘fingerprints’ of cultivated rice by hybridization with a human minisatellite probe. Proc. Natl. Acad. Sci. U.S.A. 85: 6831–6835.PubMedGoogle Scholar
  6. Darrow, G.M., 1925. The Young dewberry, a new hybrid variety. Amer. Fruit Grower 45: 9, 33.Google Scholar
  7. Darrow, G.M., 1955. Blackberry-raspberry hybrids. J. Hered. 46: 67–71.Google Scholar
  8. Fejer, S.O., 1977. Inheritance of yield, yield components, and fall-fruiting habit in red raspberry diallel crosses. Can. J. Genet. Cytol. 19: 1–13.Google Scholar
  9. Georges, M., A.-S. Lequarré, M. Castelli, R. Hanset & G. Vassart, 1988. DNA fingerprinting in domestic animals using four different minisatellite probes. Cytogenet. Cell Genet. 47: 127–131.PubMedGoogle Scholar
  10. Gilbert, D.A., N. Lehman, S.J. O'Brien & R.K. Wayne, 1990. Genetic fingerprinting reflects population differentiation in the California Channel Island fox. Nature 344: 764–767.CrossRefPubMedGoogle Scholar
  11. Hall, H.K., 1990. Blackberry breeding. Plant Breeding Reviews 8.Google Scholar
  12. Hillel, J., T. Schaap, A. Haberfeld, A.J. Jeffreys, Y. Plotzky, A. Cahaner & U. Lavi, 1990. DNA fingerprints applied to gene introgression in breeding programs. Genetics 124: 783–789.PubMedGoogle Scholar
  13. Jeffreys, A.J., V. Wilson & S.L. Thein, 1985a. Hypervariable ‘minisatellite’ regions in human DNA. Nature 314: 67–73.PubMedGoogle Scholar
  14. Jeffreys, A.J., V. Wilson & S.L. Thein, 1985b. Individual-specific ‘fingerprints’ of human DNA. Nature 316: 76–79.PubMedGoogle Scholar
  15. Jennings, D.L., 1981. A hundred years of Loganberries. Fruit Var. J. 35: 34–37.Google Scholar
  16. Jennings, D.L., 1988. Raspberries and blackberries: their breeding, diseases and growth. Academic Press, London.Google Scholar
  17. Kuhnlein, U., D. Zadworny, Y. Dawe, R.W. Fairfull & J.S. Gavora, 1990. Assessment of inbreeding by DNA fingerprinting: development of a calibration curve using defined strains of chickens. Genetics 125: 161–165.PubMedGoogle Scholar
  18. Lynch, M., 1988. Estimation of relatedness by DNA finger-printing. Mol. Biol. Evol. 5: 584–599.PubMedGoogle Scholar
  19. Nybom, H., 1990a. DNA fingerprints in sports of ‘Red Delicious’ apples. HortScience: 1641–1642.Google Scholar
  20. Nybom, H., 1990b. Genetic variation in ornamental apple trees and their seedlings (Malus, Rosaceae) revealed by DNA ‘fingerprinting’. Hereditas 113: 17–28.Google Scholar
  21. Nybom, H. & S.H. Rogstad, 1990. DNA ‘fingerprinting’ detect genetic variation in Acer negundo. Plant Syst. Evol. 173: 49–56.Google Scholar
  22. Nybom, H., S.H. Rogstad & B.A. Schaal, 1990. Genetic variation detected by use of the M13 ‘DNA fingerprint’ probe in Malus, Prunus, and Rubus (Rosaceae). Theor. Appl. Genet. 79: 153–156.Google Scholar
  23. Nybom, H. & B.A. Schaal, 1990a. DNA ‘fingerprints’ applied to paternity analysis in apples (Malus x domestica). Theor. Appl. Genet. 79: 763–768.Google Scholar
  24. Nybom, H. & B.A. Schaal, 1990b. DNA ‘fingerprints’ reveal genotypic distributions in natural populations of blackberries and raspberries. Amer. J. Bot. 77: 883–888.Google Scholar
  25. Nybom, H., B.A. Schaal & S.H. Rogstad, 1989. DNA ‘fingerprints’ can distinguish cultivars of blackberries and raspherries. Acta Hortic. 262: 305–310.Google Scholar
  26. Reeve, H.K., D.F. Westneat, W.A. Noon, P.W. Sherman & C.F. Aquadro, 1990. DNA ‘fingerprinting’ reveals high levels of inbreeding in colonies of the eusocial naked mole rat. Proc. Natl. Acad. Sci. U.S.A. 87: 2496–2500.PubMedGoogle Scholar
  27. Rogstad, S.H., J.C. PattonII & B.A. Schaal, 1988. M13 repeat probe detects DNA minisatellite-like sequences in gymnosperms and angiosperms. Proc. Natl. Acad. Sci. U.S.A. 85: 9176–9178.PubMedGoogle Scholar
  28. Ryskov, A.P., A.G. Jincharadze, M.I. Prosnyak, P.L. Ivanov & S.A. Limborska, 1988. M13 phage DNA as a universal marker for DNA fingerprinting of animals, plants and microorganisms. FEBS Letters 233: 388–392.CrossRefPubMedGoogle Scholar
  29. Saghai-Maroof, M.A., K.M. Soliman, R.A. Jorgensen & R.W. Allard, 1984. Ribosomal DNA spacer-length polymorphism in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. U.S.A. 81: 8014–8018.PubMedGoogle Scholar
  30. Sokal, R.S. & F.J. Rohlf, 1969. Biometry. W.H. Freeman & Co., San Fransisco.Google Scholar
  31. Thompson, M.M., 1961. Cytogenetics of Rubus. II. Cytological studies of the varieties ‘Young’, ‘Boysen’ and related forms. Amer. J. Bot. 48: 667–673.Google Scholar
  32. Waldo, G.F., 1968. Blackberry breeding involving native Pacific coast parentage. Fruit Var. Hort. Digest 22: 3–7.Google Scholar
  33. Westneat, D.F., W.A. Noon, H.K. Reeve & C.F. Aquadro, 1988. Improved hybridization conditions for DNA ‘finger-prints’ probed with M13. Nucleic Acids. Res. 16: 4161.PubMedGoogle Scholar
  34. Wetton, J.H., R.E. Carter, D.T. Parkin & D. Walters, 1987. Demographic study of a wild house sparrow population by DNA fingerprinting. Nature 327: 147–149.CrossRefPubMedGoogle Scholar
  35. Zimmerman, P.A., N. Lang-Unnasch & C.A. Cullis, 1989. Polymorphic regions in plant genomes detected by an M13 probe. Genome 32: 824–828.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Hilde Nybom
    • 1
  • Harvey K. Hall
    • 2
  1. 1.Balsgård-Department of Horticultural Plant BreedingSwedish University of Agricultural SciencesKristianstadSweden
  2. 2.Department of Scientific and Industrial ResearchRiwaka Research StationMotuekaNew Zealand

Personalised recommendations