Advertisement

Euphytica

, Volume 87, Issue 3, pp 165–172 | Cite as

Identification of tetraploid regenerants from cotyledons of diploid watermelon cultured in vitro

  • Michael E. Compton
  • D. J. Gray
  • G. W. Elmstrom
Article

Summary

Adventitious shoots were obtained from the diploid watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] cultivars Dixielee, Jubilee II, Mickylee, Minilee, and Royal Sweet by culturing excised cotyledons on shoot regeneration medium for six weeks. Tetraploid and diploid regenerants were identified by counting the number of chloroplasts per guard cell pair from leaves of regenerated plants. Cross fertilization of putative tetraploids with diploid pollinators and the production of triploid seed confirmed the efficacy of this approach. The mean number of chloroplasts for tetraploid regenerants was 19.1 whereas diploids averaged 11.2. These values were similar to tetraploid and diploid plants from seed. Ovary diameter, petal, and anther diameter of male flowers, and leaf length by width ratio were also good indicators of plant ploidy. Progeny obtained from self-fertile tetraploids of ‘Mickylee’ were crossed with various diploid pollinators to produce triploid hybrid seed. All triploid plants from tissue culture-derived tetraploids produced fruit comparable in quality to fruit produced by currently-available triploid hybrids, demonstrating that in vitro tetraploid induction can be used to produce high quality tetraploid plants for use in triploid hybrid seed production.

Key words

Citrullus lanatus cucurbits tissue culture adventitious shoot organogenesis seedless watermelon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrus, C.F., V.S. Seshadri & P.C. Grimball, 1971. Production of seedless watermelons. Agricultural Research Service, United States Department of Agriculture Technical Bulletin No. 1425.Google Scholar
  2. Bouabdallah L. & M. Branchard, 1986. Regeneration of plants from callus cultures of Cucumis melo L. Z. Pflanzenzüchtg. 96: 82–85.Google Scholar
  3. Cardi T., D. Carputo & L. Frusciante, 1992. In vitro shoot regeneration and chromosome doubling in 2x and 3x potato clones. Amer. Potato J. 69: 1–12.Google Scholar
  4. Cardi T., V. Iannamico, F. D'Ambrosio, E. Filippone & P.F. Lurquin, 1993. In vitro regeneration and cytological characterization of shoots from leaf explants of three accessions of Solanum commersonii. Plant Cell Tissue Organ Cult. 34: 107–114.Google Scholar
  5. Compton M.E. & D.J. Gray, 1993a. Shoot organogenesis and plant regeneration from cotyledons of diploid, triploid, and tetraploid watermelon. J. Amer. Soc. Hort. Sci. 118: 151–157.Google Scholar
  6. Compton M.E. & D.J. Gray, 1993b. Somatic embryogenesis and plant regeneration from immature cotyledons of watermelon. Plant Cell Rep. 12: 61–65.Google Scholar
  7. Compton M.E. & D.J. Gray, 1994. Adventitious shoot organogenesis and plant regeneration from cotyledons of tetraploid watermelon. HortScience 29: 211–213.Google Scholar
  8. Compton M.E. & R.E. Veilleux, 1991. Variation for genetic recombination among tomato plants regenerated from three tissue culture systems. Genome 34: 810–817.Google Scholar
  9. Dong J.Z. & S.R. Jia, 1991. High efficiency plant regeneration from cotyledons of watermelon (Citrullus vulgaris Schrad.). Plant Cell Rep. 9: 559–562.Google Scholar
  10. Ezura H., H. Amagai, K. Yoshioka & K. Oosawa, 1992a. Efficient production of tetraploid melon (Cucumis melo L.) by somatic embryogenesis. Japan. J. Breed. 42: 137–144.Google Scholar
  11. Ezura H., H. Amagai, K. Yoshioka & K. Oosawa, 1992b. Highly frequent appearance of tetraploidy in regenerated plants, a universal phenomenon, in tissue cultures of melon (Cucumis melo L.). Plant Sci. 85: 209–213.Google Scholar
  12. Fassuliotis G. & B.V. Nelson, 1992. Regeneration of tetraploid muskmelons from cotyledons and their morphological differences from two diploid muskmelon genotypes. J. Amer. Soc. Hort. Sci. 117: 863–866.Google Scholar
  13. Fleming M.L.M.H., M.H. Demaine & W. Powell, 1992. Ploidy doubling by callus culture of potato dihaploid leaf explants and the variation in regenerated plants. Ann. Appl. Biol. 121: 183–188.Google Scholar
  14. Frandsen N.O., 1968. Die Plastidenzahl als Merkmal bei der Kartoffel. Theor. Appl. Genet. 38: 153–167.Google Scholar
  15. Frankenberger E.A., P.M. Hasegawa & E.C. Tigchelaar, 1981. Diallel analysis of shoot-forming capacity among selected tomato genotypes. Z. Pflanzenphysiol. 102: 233–242.Google Scholar
  16. Gray D.J., D.W. McColley & M.E. Compton, 1993. High-frequency somatic embryogenesis from quiescent seed cotyledons of Cucumis melo cultivars. J. Amer. Soc. Hort. Sci. 118: 425–432.Google Scholar
  17. Hansen A.L., C. Plever, H.C. Pedersen, B. Keimer & S.B. Andersen, 1994. Efficient in vitro chromosome doubling during Beta vulgaris ovule culture. Plant Breed. 112: 89–95.Google Scholar
  18. Jacobs J.P. & J.I. Yoder, 1989. Ploidy levels of transgenic tomato plants determined by chloroplast number. Plant Cell Rep. 7: 662–664.Google Scholar
  19. Karp A., R.S. Nelson, E. Thomas & S.W.J. Bright, 1982. Chromosome variation in protoplast-derived potato plants. Theor. Appl. Genet. 63: 265–272.Google Scholar
  20. Kihara H., 1951. Triploid watermelons. Proc. Amer. Soc. Hort. Sci. 58: 217–230.Google Scholar
  21. Kim S.G., J.R. Chang, H.C. Cha & K.W. Lee, 1988. Callus growth and plant regeneration in diverse cultivars of cucumber (Cucumis sativus L.). Plant Cell Tissue Organ Cult. 12: 67–74.Google Scholar
  22. McCuistion F. & G.W. Elmstrom, 1993. Identifying polyploids of various cucurbits. Proc. Fla. State Hort. Soc. 106: 155–157.Google Scholar
  23. M'Ribu H.K. & R.E. Veilleux, 1990. Effect of genotype, explant, subculture interval and environmental conditions on regeneration of shoots from in vitro monoploids of a diploid potato species, Solanum phureja Juz. & Buk. Plant Cell Tissue Organ Cult. 23: 171–179.Google Scholar
  24. Murashige T. & F. Skoog, 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.Google Scholar
  25. Niedz R.P., S.S. Smith, K.B. Dunbar, C.T. Stephens & H.H. Murak, 1989. Factors influencing shoot regeneration from cotyledonary explants of Cucumis melo. Plant Cell Tissue Organ Cult. 18: 313–319.Google Scholar
  26. Odake Y., A. Udagawa, H. Saga & M. Mii, 1993. Somatic embryogenesis of tetraploid plants from internodal segments of a diploid cultivar of Asparagus officinalis L. grown in liquid culture. Plant Sci. 94: 173–177.Google Scholar
  27. Pehu E., R.E. Veilleux & K.W. Hilu, 1987. Cluster analysis of anther-derived plants of Solanum phureja (Solanaceae) based on morphological characteristic. Amer. J. Bot. 74: 47–52.Google Scholar
  28. SAS Institute, Inc., 1988. SAS/STAT user's guide Release 6.03. SAS Institute, Inc., Cary, N.C.Google Scholar
  29. Wan Y., D.R. Duncan, A.L. Rayburn, J.F. Petolino & J.M. Widholm, 1991. The use of antimicrotubule herbicides for the production of doubled haploid plants from anther-derived maize callus. Theor. Appl. Genet. 81: 205–211.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Michael E. Compton
    • 1
  • D. J. Gray
    • 1
  • G. W. Elmstrom
    • 1
  1. 1.Central Florida Research and Education CenterUniversity of Florida, Institute of Food and Agricultural SciencesLeesburgUSA

Personalised recommendations