Advertisement

Euphytica

, Volume 48, Issue 3, pp 197–209 | Cite as

Application of the concepts of test value and varietal value to the study of genetic advance in recurrent selection: A synthesis

  • A. Gallais
Article

Summary

The concepts of varietal ability and value in test of a genotype or group of genotypes are specified according to the type of variety (clones, hybrids, lines, synthetics) and the testing system (phenotype, S1, General combining ability (GCA), line value, General synthesizing ability (GSA)). Varietal ability and value in test are to be considered as any quantitative characters for which it is possible to define additive effects, dominance effects and epistasis. For diploids in recurrent selection, only additive effects and additive× additive epistasis for varietal value contribute to genetic advance. Genetic advance depends on the covariance between the testing value of the parents and the test value of the progeny by intercrossing. Such a parent-offspring covariance is, in the absence of epistasis and inbreeding, one half of the covariance between additive effects in test of the parents and additive effects in test of their progenies. This allows one to express directly the genetic advance in varietal value according to the type of variety and to the testing system used in recurrent selection. The case of biallelic populations is considered; it allows some discussions on the relative values of components of variance of varietal and test values.

Key words

varietal ability line value test value synthesising ability varietal development genetic advance recurrent selection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Falconer, D.S., 1960. Introduction to Quantitative Genetics. Oliver and Boyd. London.Google Scholar
  2. Gallais, A., 1975a. Prévision de la vigueur et sélection des parents d'une variété synthétique. Ann. Amélior. Plantes 25: 233–264.Google Scholar
  3. Gallais, A., 1975b. Selection with truncation in autotetraploids. Comparison with diploids. Theor. Appl. Genet. 46: 387–395.Google Scholar
  4. Gallais, A., 1978a. Amélioration des populations, méthodes de sélection et création de variétés. II Le concept de valeur variétale et ses conséquences pour la sélection récurrente. Ann. Amélior. Plantes 28: 269–287.Google Scholar
  5. Gallais, A., 1978b. Le concept de valeur en lignées et son utilisation en Amélioration des Plantes. Ann. Amélior. Plantes 29: 1–22.Google Scholar
  6. Gallais, A., 1978c. Application du concept de valeur variétale à la théorie de la sélection de variétés hybrides. Ann. Amélior. Plantes 29: 23–41.Google Scholar
  7. Gallais, A., 1979a. Application du concept d'aptitude variétale à la théorie de la sélection des variétés synthétiques chez les diploïdes et les autopolyploïdes. Ann. Amélior. Plantes 29: 11–129.Google Scholar
  8. Gallais, A., 1979b. The concept of varietal ability in plant breeding. Euphytica 28: 811–823.Google Scholar
  9. Gallais, A., 1979c. It the Fisher's model necessary for the theory of population improvement? Theor. Appl. Genet. 58: 177–180.Google Scholar
  10. Gallais, A., 1988. A method of line development using doubled haploids: the single doubled haploid descent recurrent selection. Theor. Appl. Genet. 75: 330–332.CrossRefGoogle Scholar
  11. Gallais, A., 1989. Concepts of varietal value and of test value in autotetraploids. Application to genetic advance in population improvement. Genome 32: 420–424.Google Scholar
  12. Gallais, A., 1990. Quantitative genetics of doubled haploid populations and application to the theory of line development. Genetics 124: 199–206.PubMedGoogle Scholar
  13. Gallais, A. & A.J., Wright, 1979. A general approach to the concept of varietal ability for synthetic varieties. Theor. Appl. Genet. 57: 81–87.Google Scholar
  14. Griffing, B., 1962. Consequences of truncation selection based on combinations of individual performances and general combining ability. Aust. J. Biol. Sci. 15: 33–351.Google Scholar
  15. Kempthorne, O., 1951. An introduction to genetic statistics. S. Wiley. New-York.Google Scholar
  16. Wright, A.J., 1974. A genetic theory of general varietal ability for diploid crops. Theor. Appl. Genet. 45: 163–169.Google Scholar
  17. Wright, A.J., 1978. The concept of general synthesising ability in population improvement and variety construction. Conference on the occasion of the 65th Professor Schnell's birthday, University of Hohenheim, Stuttgart, 19–20 May 1978.Google Scholar
  18. Wright, A.J., 1981. The quantitative genetics of diploid synthetic varieties. In: A., Gallais (Ed.) Quantitative Genetics and Breeding Methods INRA, Lusignan, France, 137–157.Google Scholar
  19. Wright, S., 1922. The effects of inbreeding and crossbreeding on guinea pigs. III Crosses between highly inbred families. U.S. Dep. Agric., Washington, 1121.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • A. Gallais
    • 1
    • 2
  1. 1.CNRS-INRA-UPSGif-sur-YvetteFrance
  2. 2.I.N.A. P-GParis Cedex 05France

Personalised recommendations