Plant Molecular Biology

, Volume 21, Issue 6, pp 1201–1205 | Cite as

Nitrite reductase gene from Synechococcus sp. PCC 7942: homology between cyanobacterial and higher-plant nitrite reductases

  • Ignacio Luque
  • Enrique Flores
  • Antonia Herrero
Update Section Short Communication


The gene encoding nitrite reductase (nir) from the cyanobacterium Synechococcus sp. PCC 7942 has been identified and sequenced. This gene comprises 1536 nucleotides and would encode a polypeptide of 56506 Da that shows similarity to nitrite reductase from higher plants and to the sulfite reductase hemoprotein from enteric bacteria. Identities found at positions corresponding to those amino acids which in the above-mentioned proteins hold the Fe4S4-siroheme active center suggest that nitrite reductase from Synechococcus bears an active site much alike that present in those reductases. The fact that the Synechococcus and higher-plant nitrite reductases are homologous proteins gives support to the endosymbiont theory for the origin of chloroplasts.

Key words

chloroplast evolution cyanobacteria nitrite reductase gene Synechococcus sp. PCC 7942 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arizmendi JM, Serra JL: Purification and some properties of the nitrite reductase from the cyanobacterium Phormidium laminosum. Biochim Biophys Acta 1040: 237–244 (1990).PubMedGoogle Scholar
  2. 2.
    Back E, Burkhart W, Moyer M, Privalle L, Rothstein S: Isolation of cDNA clones coding for spinach nitrite reductase: complete sequence and nitrate induction. Mol Gen Genet 212: 20–26 (1988).CrossRefPubMedGoogle Scholar
  3. 3.
    Campbell WH, Kinghorn JR: Functional domains of assimilatory nitrate reductases and nitrite reductases. Trends Biochem Sci 15: 315–319 (1990).CrossRefPubMedGoogle Scholar
  4. 4.
    Cole JA: Physiology, biochemistry, and genetics of nitrite reduction by Escherichia coli. In: Wray JL, Kinghorn JR (eds) Molecular and Genetic Aspects of Nitrate Assimilation, pp. 229–243. Oxford University Press, New York (1989).Google Scholar
  5. 5.
    Devereux J, Haeberli P, Smithies O: A comprehensive set of sequence analysis programs for the VAX. Nucl Acids Res 12: 387–395 (1984).PubMedGoogle Scholar
  6. 6.
    Douglas SE, Turner S: Molecular evidence for the origin of plastids from a cyanobacterium-like ancestor. J Mol Evol 33: 267–273 (1991).PubMedGoogle Scholar
  7. 7.
    Flores E, Ramos JL, Herrero A, Guerrero MG: Nitrate assimilation by cyanobacteria. In: Papageorgiou G, Packer L (eds) Photosynthetic Prokaryotes: Cell Differentiation and Function, pp. 363–387. Elsevier, New York (1983).Google Scholar
  8. 8.
    Guerrero MG, Lara C: Assimilation of inorganic nitrogen. In Fay P, Van Baalen C (eds) The Cyanobacteria, pp. 163–186. Elsevier, Amsterdam (1987).Google Scholar
  9. 9.
    Guerrero MG, Vega JM, Losada M: The assimilatory nitrate-reducing system and its regulation. Annu Rev Plant Physiol 32: 169–204 (1981).CrossRefGoogle Scholar
  10. 10.
    Johnstone IL, McCabe PC, Greaves P, Gurr SJ, Cole GE, Brow MAD, Unkles SE, Clutterbuck AJ, Kinghorn JR, Innis MA: Isolation and characterization of the crnA-niaD gene cluster for nitrate assimilation in Aspergillus nidulans. Gene 90: 181–192 (1990).CrossRefPubMedGoogle Scholar
  11. 11.
    Lahners K, Kramer V, Back E, Privalle L, Rothstein S: Molecular cloning of complementary DNA encoding maize nitrite reductase. Plant Physiol 88: 741–746 (1988).Google Scholar
  12. 12.
    Luque I, Herrero A, Flores E, Madueño F: Clustering of genes involved in nitrate assimilation in the cyanobacterium Synechococcus. Mol Gen Genet 232: 7–11 (1992).CrossRefPubMedGoogle Scholar
  13. 13.
    Manzano JC, Candau P, Gómez-Moreno C, Relimpio AM, Losada M: Ferredoxin-dependent photosynthetic reduction of nitrate and nitrite by particles of Anacystis nidulans. Mol Cell Biochem 10: 161–169 (1976).PubMedGoogle Scholar
  14. 14.
    Méndez JM, Vega JM: Purification and molecular properties of nitrite reductase from Anabaena sp. 7119. Physiol Plant 52: 7–14 (1981).Google Scholar
  15. 15.
    Ostrowski J, Wu J-Y, Rueger DC, Miller BE, Siegel LM, Kredich M: Characterization of the cysJIH regions of Salmonella typhimurium and Escherichia coli B. J Biol Chem 264: 15726–15737 (1989).PubMedGoogle Scholar
  16. 16.
    Peakman T, Crouzet J, Mayaux JF, Busby S, Mohan S, Harborne N, Wootton J, Nicolson R, Cole J: Nucleotide sequence, organization and structural analysis of the products of genes in the nirB-cysG region of the Escherichia coli K-12 chromosome. Eur J Biochem 191: 315–323 (1990).PubMedGoogle Scholar
  17. 17.
    Sanger F, Nicklen S, Coulsen AR: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467 (1977).PubMedGoogle Scholar
  18. 18.
    Weeden NF: Genetic and biochemical implications of the endosymbiotic origin of the chloroplast. J Mol Evol 17: 133–139 (1981).PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Ignacio Luque
    • 1
  • Enrique Flores
    • 1
  • Antonia Herrero
    • 1
  1. 1.Instituto de Bioquímica Vegetal y FotosíntesisUniversidad de Sevilla y CSIC, Facultad de BiologíaSevillaSpain

Personalised recommendations