Plant Molecular Biology

, Volume 16, Issue 4, pp 647–661 | Cite as

Acid phosphatase-11, a tightly linked molecular marker for root-knot nematode resistance in tomato: from protein to gene, using PCR and degenerate primers containing deoxyinosine

  • Jac M. M. J. G. Aarts
  • Jan G. J. Hontelez
  • Peter Fischer
  • Ruud Verkerk
  • Albert van Kammen
  • Pim Zabel


With a view to cloning the root-knot nematode resistance gene Mi in tomato by chromosome walking, we have developed a molecular probe for the tightly linked acid phosphatase-1 (Aps-1) locus. The acid phosphatase-1 allozyme (APS-11), encoded by the Aps-11 allele originating from Lycopersicon peruvianum, was purified to apparent homogeneity from tomato roots and suspension cells. Microsequencing of CNBr and tryptic peptides generated from APS-11 provided a partial amino acid sequence, which accounted for approximately 23% of the protein and revealed two stretches of homology with soybean proteins KSH3 and VSP27, comprising 22 matches within 26 amino acid residues. The partial amino acid sequence information enabled us to isolate a 2.4 kb genomic Aps-11 sequence by means of the polymerase chain reaction (PCR), primed by degenerate pools of oligodeoxyribonucleotides, synthesized on the basis of the amino acid sequences. Synthesis of the 2.4 kb PCR product was specific for genomic templates carrying the L. peruvianum Aps-11 allele. Crucial to the priming specificity and the synthesis of the 2.4 kb genomic sequence was the use of degenerate primer pools in which the number of different primer species was limited by incorporating deoxyinosine phosphate residues at three and four base ambiguities. In using cDNA as a template, a 490 bp sequence was obtained, indicating a high proportion of intron sequences in the 2.4 kb genomic Aps-11 sequence. The Aps-11 origin of the PCR product was confirmed by RFLP (restriction fragment length polymorphism) analysis, using both a chromosome 6 substitution line and a pair of nearly isogenic lines, differing for a small chromosomal region around the Aps-1/Mi loci.

Key words

acid phosphatase deoxyinosine-containing primers polymerase chain reaction restriction fragment length polymorphism analysis root-knot nematode resistance tomato 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bailey DM: The seedling test method for root-knot nematode resistance. Proc Am Soc Hort Sci 38: 573–575 (1941).Google Scholar
  2. 2.
    Bajwa W, Meyhack B, Rudoph H, Schweingruber A-M, Hinnen A: Structural analysis of the two tandemly repeated acid phosphatase genes in yeast. Nucl Acids Res 12: 7721–7739 (1984).PubMedGoogle Scholar
  3. 3.
    Berger J, Garattini E, Hua J-C, Udenfriend S: Cloning and sequencing of human intestinal alkaline phosphatase cDNA. Proc Natl Acad Sci USA 84: 695–698 (1987).PubMedGoogle Scholar
  4. 4.
    Beyreuther K, Bieseler B, Bovens J, Dildrop R, Neifer K, Stuter K, Zais S, Ehring R, Zabel P. In: Tschesche H (ed) Modern Methods in Protein Chemistry, pp. 303–335. Water de Gruyter, Berlin (1983).Google Scholar
  5. 5.
    Burke DT, Carle GF, Olson MV: Cloning of large segments of exogeneous DNA into yeast by means of artificial chromosome vectors. Science 236: 806–812 (1987).PubMedGoogle Scholar
  6. 6.
    Collins FS: Chromosome jumping. In: Davies KE (ed) Genome Analysis: A Practical Approach, pp. 73–94. IRL Press, Oxford (1988).Google Scholar
  7. 7.
    Devereux J, Haeberli P, Smithies O: A comprehensive set of sequence analysis programs for the VAX. Nucl Acids Res 12: 387–395 (1984).PubMedGoogle Scholar
  8. 8.
    DuPont FM, Staraci LC, Chou B, Thomas BR, Williams BG, Mudd JB: Effect of chilling temperatures upon cell cultures of tomato. Plant Physiol 77: 64–68 (1985).Google Scholar
  9. 9.
    Ehlen T, Dubeau L: Detection of ras point mutations by polymerase chain reaction using mutation-specific, inosine-containing oligonucleotide primers. Biochem Biophys Res Comm 160: 441–447 (1989).PubMedGoogle Scholar
  10. 10.
    Fassuliotis G: The role of nematologist in the development of resistant cultivars. In Sasser JN, Carter CC (eds) An Advanced Treatise on Meloidogyne, vol. I. Biology and Control, pp. 233–240. Cooperative Publication Dept. Plant Pathology, North Carolina State University and US Agency for International Development, Raleigh, NC, USA (1985).Google Scholar
  11. 11.
    Feinberg AP, Vogelstein B: A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 137: 266–267 (1984).PubMedGoogle Scholar
  12. 12.
    Garattini E, Hua JC, Udenfriend S: Cloning and sequencing of bovine kidney akaline phosphatase cDNA. Gene 59: 41–46 (1987).CrossRefPubMedGoogle Scholar
  13. 13.
    Gilbert JC: Some linkage studies with the Mi gene for resistance to root-knot. Rep Tomato Genet Coop 8: 15–17 (1958).Google Scholar
  14. 14.
    Gilbert JC, McQuire DC: One major gene for resistance to severe galling from Meloidogyne incognita. Rep Tomato Genet Coop 5: 15 (1955).Google Scholar
  15. 15.
    Henthorn PS, Knoll BJ, Raducha M, Rothblum KN, Slaughter C, Weiss M, Lafferty MA, Fischer T, Harris H: Products of two common alleles at the locus for human placental alkaline phosphatase differ by seven amino acids. Proc Natl Acad Sci USA 83: 5597–5601 (1986).PubMedGoogle Scholar
  16. 16.
    Kishi F, Matsuma S, Kajii T: Nucleotide sequence of the human liver type alkaline phosphatase cDNA. Nucl Acids Res 17: 2129 (1989).PubMedGoogle Scholar
  17. 17.
    Knoth K, Roberds S, Poteet C, Tamkun M: Highly degenerate, inosine-containing primers specifically amplify rare cDNA using the polymerase chain reaction. Nucl Acids Res 16: 10932 (1988).PubMedGoogle Scholar
  18. 18.
    Koornneef M, Zabel P: A new look at old linkage data of chromosome 6. Rep Tomato Genet Coop 40: 17–19 (1990).Google Scholar
  19. 19.
    Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685 (1970).PubMedGoogle Scholar
  20. 20.
    Martin FH, Castro MM, Aboul-ela F, Tinoco I: Base pairing involving deoxyinosine: implications for probe design. Nucl Acids Res 13: 8927–8938 (1985).PubMedGoogle Scholar
  21. 21.
    Mason HS, Guerrero FD, Boyer JS, Mullet JE: Proteins homologous to leaf glycoproteins are abundant in stems of dark-grown soybean seedlings. Analysis of proteins and cDNAs. Plant Mol Biol 11: 845–856 (1988).Google Scholar
  22. 22.
    Medina-Filho HP: Linkage of Aps-1,Mi and other markers on chromosome 6. Rep Tomato Genet Coop 30: 26–28 (1980).Google Scholar
  23. 23.
    Medina-Filho HP, Tanksley SD: Breeding for nematode resistance. In: evans DA, Sharp WR, Ammirato PV, Yamada Y (eds) Handbook of Plant Cell Culture, vol. 1, Techniques for Propagation and Breeding, pp. 904–923. MacMillan, New York (1983).Google Scholar
  24. 24.
    Misumi Y, Tashiro K, Hattori M, Sakaki Y, Ikehara Y: Primary structure of rat liver alkaline phosphatase deduced from its cDNA. Biochem J 249: 661–668 (1988).PubMedGoogle Scholar
  25. 25.
    Morrissey JH: Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem 117: 307–310 (1981).PubMedGoogle Scholar
  26. 26.
    Muller AJ, Carr PW: Examination of kinetic effects in the high-performance liquid affinity chromatography of glycoproteins by stopped-flow and pulsed elution methods. J Chromatogr 294: 235–246 (1984).CrossRefGoogle Scholar
  27. 27.
    Murray EE, Lotzer J, Eberle M: Codon usage in plant genes. Nucl Acids Res 17: 477–498 (1989).PubMedGoogle Scholar
  28. 28.
    Murray MG, Thompson WF: Rapid isolation of high molecular weight plant DNA. Nucl Acids Res 8: 4321–4325 (1980).PubMedGoogle Scholar
  29. 29.
    Ohtsuka E, Matsuki S, Ikehara M, Takahashi Y, matsubara K: An alternative approach to deoxyoligonucleotides as hybridization probes by insertion of deoxyinosine at ambiguous codon positions. J Biol Chem 260: 2605–2608 (1985).PubMedGoogle Scholar
  30. 30.
    Paul EM, Williamson VM: Purification and properties of acid phosphatase-1 from a nematode resistant tomato cultivar. Plant Physiol 84: 399–403 (1987).Google Scholar
  31. 31.
    Pearson WR, Lipman DJ: Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85: 2444–2448 (1988).PubMedGoogle Scholar
  32. 32.
    Rick CM: Controlled introgression of chromosomes of Solanum pennellii into Lycopersicon esculentum: segregation and recombination. Genetics 62: 753–768 (1969).Google Scholar
  33. 33.
    Rick CM, Fobes JF: Association of an allozyme with nematode resistance. Rep Tomato Genet Coop 24: 25 (1974).Google Scholar
  34. 34.
    Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G, Dean M, Rozmahel R, Cole JL, Kennedy D, Hidaka N, Zsiga M, Buchwald M, Riordan JR, Tsui L-C, Collins FS: Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245: 1059–1065 (1989).PubMedGoogle Scholar
  35. 35.
    Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).Google Scholar
  36. 36.
    Sasser JN, Carter CC (eds) An Advanced Treatise on Meloidogyne, vol I. Biology and Control. Cooperative Publication, Dept. Plant Pathology, North Carolina State University and US Agency for International Development, Raleigh, NC (1985).Google Scholar
  37. 37.
    Sasser JN, Eisenback JD, Carter CC, Triantaphyllou AC: The international Meloidogyne project—its goals and accomplishments. Ann Rev Phytopathol 21: 271–288 (1983).CrossRefGoogle Scholar
  38. 38.
    Smith PG: Embryo culture of a tomato species hybrid. Proc Am Soc Hort Sci 44: 413–416 (1944).Google Scholar
  39. 39.
    Sommer R, Tautz D: Minimal homology requirements for PCR primers. Nucl Acids Res 17: 6749 (1989).PubMedGoogle Scholar
  40. 40.
    Staswick PE: Soybean vegetative storage protein structure and gene expression. Plant Physiol 87: 250–254 (1988).Google Scholar
  41. 41.
    Takahashi Y, Kato K, Hayashizaki Y, Wakabayashi T, Ohtsuka E, Matsuki S, Ikehara M, Matsubara K: Molecular cloning of the human cholecystokinin gene by use of a synthetic probe containing deoxyinosine. Proc Natl Acid Sci USA 82: 1931–1935 (1985).Google Scholar
  42. 42.
    Terao M, Mintz B: Cloning and characterization of a cDNA coding for mouse placental alkaline phosphatase. Proc Natl Acad Sci USA 84: 7051–7055 (1987).PubMedGoogle Scholar
  43. 43.
    Thiede MA, Yoon K, Golub EE, Noda M, Rodan GA: Structure and expression of rat osteosarcoma (ROS 17/2.8) alkaline phosphatase: Product of a single copy gene. Proc Natl Acad Sci USA 85: 319–323 (1988).PubMedGoogle Scholar
  44. 44.
    Thomas BR, Pratt D: Breeding tomato strains for use in cell culture research. Plant Mol Biol Newsl 2: 102–105 (1981).Google Scholar
  45. 45.
    Watanabe S, Watanabe T, Li WB, Soong B-W, Chou JY: Expression of the germ cell alkaline phosphatase gene in human choriocarcinoma cells. J Biol Chem 264: 12611–12619 (1989).PubMedGoogle Scholar
  46. 46.
    Weiss MJ, Henthorn PS, Lafferty MA, Slaughter C, Raducha M, Harris H: Isolation and characterization of a cDNA encoding a human liver/bone/kidney-type alkaline phosphatase. Proc Natl Acad Sci USA 83: 7182–7186 (1986).PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Jac M. M. J. G. Aarts
    • 1
  • Jan G. J. Hontelez
    • 1
  • Peter Fischer
    • 2
  • Ruud Verkerk
    • 1
  • Albert van Kammen
    • 1
  • Pim Zabel
    • 1
  1. 1.Department of Molecular BiologyAgricultural UniversityWageningenNetherlands
  2. 2.Zentrum für Molekulare BiologieUniversität HeidelbergHeidelbergGermany

Personalised recommendations