, Volume 9, Issue 1, pp 111–121 | Cite as

Cytogenetics of the trispecific hybrid Nicotiana tabacum × (N. glutinosa × N. trigonophylla) and its reciprocal

  • K. V. Krishnamurty
  • G. S. Murty
  • K. Appa Rao


The paper deals with the cytogenetics of a new three species hybrid combination obtained as a result of crossing N. tabacum with the fertile amphiploid N. glutinosa × N. trigonophylla. The amphidiploid was established through colchicine doubling of a sterile hybrid of the same parentage in 1956. The tabacum-amphidiploid cross was made reciprocally and meiosis of both the hybrids was studied. While the N. tabacum × (glutinosa-trigonophylla) hybrid showed a pairing frequency of 6.09 bivalents (2 n of hybrid: 48) the reciprocal (glutinosa-trigonophylla) × N. tabacum, showed a mean bivalent frequency of 10.07. Other stages of meiosis also revealed differences. Pollen fertility was reduced to less than 1.0% in both and the hybrids proved to be sterile although one of them, (glutinosa-trigonophylla) × N. tabacum, exhibited a heavy setting of parthenocarpic capsules. In spite of continued failures, germination could be induced in a single seed of a backcross between N. tabacum × (glutinosa-trigonophylla) and N. tabacum.

While the amphiploid of the original cross possessed predominance of glutinosa characters, the reciprocal hybrids showed a greater expression of tabacum characters.

The pairing behaviour of the hybrids is discussed in the light of pairing behaviour of the same species in other hybrid combinations and a tentative assumption is drawn explaining the affinity between N. trigonophylla and N. tomentosiformis (present in the tabacum genome), confirming, to a certain extent, the statement that a relationship appears to be evident between the progenitors of the sections tomentosae and trigonophyllae, both with 12 chromosomes.


Colchicine Pollen Fertility Sterile Hybrid Hybrid Combination Species Hybrid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Met behulp van colchicinebehandeling werd in 1956 de steriele bastaard van Nicotiana glutinosa x N. trigonophylla verdubbeld. De aldus verkregen fertiele amphidiploid (welke onvatbaar was voor het tabaksmozaïek-virus) werd reciprook gekruist met N. tabacum. De uit genoemde 3 soorten opgebouwde bastaarden bezitten 48 chromosomen. Ze zijn in hoge mate steriel. Slechts 1 kiemend zaad werd verkregen van de terugkruising met N. tabacum.

Terwijl de amphidiploiden van de oorspronkelijke kruising vooral glutinosa eigenschappen vertoonden, hadden de reciproke bastaarden met N. tabacum meer tabacum-kenmerken.

In het gedrag van chromosomen-paring werd een bevestiging gevonden van de verwantschap tussen de 12-chromosomige voorouders van de secties tomentosae en trigonophyllae.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fardy, A. & Hitier, H., Espèces tétraploides et hybrides interspécifiques amphidiploides et triples diploides de Nicotiana, obtenu par l'action de la colchicine. Mém. du Serv. d'Expl. Industr. des Tabacs et des Allumettes 1 Sér. B (1945): 1–117.Google Scholar
  2. 2.
    Goodspeed, T. H., The genus Nicotiana. Chronica Botanica 16 (1954) 536 pp.Google Scholar
  3. 3.
    Goodspeed, T. H. & Thompson, M. C., Cytotaxonomy of Nicotiana. II. Botanical Review 25 (1959): 385–415.Google Scholar
  4. 4.
    Greenleaf, W. H., Sterile and fertile amphidiploids: Their possible relation to the origin of N. tabacum. Genetics 26 (1941): 301–324.Google Scholar
  5. 5.
    Kostoff, D., A fertile triple hybrid, Nicotiana tabacum × (N. sylvestris × N. rusbyi). Preliminary Report. Amer. J. Bot. 18 (1931): 112–113.Google Scholar
  6. 6.
    Kostoff, D., Cytogenetic studies of the triple fertile hybrid N. tabacum × (N. sylvestris × N. rusbyi)-N. triplex. Bull. Appl. Bot., Gen. and Plant Br., Sér. 2 No. 5 (1993): 167–205.Google Scholar
  7. 7.
    Kostoff, D., Studies on polyploid plants. II. Cytogenetics of the trigenomal triple hybrid (N. rustica × N. paniculata) × N. caudigera. Bull. Inst. Genet. U.S.S.R. 1935, no. 10: 19–28.Google Scholar
  8. 8.
    Kostoff, D. & Radjably, I., Cytogenetic studies of certain composite hybrids in Nicotiana. Bull. Inst. Gen. U.S.S.R. 1935, no. 10: 29–63.Google Scholar
  9. 9.
    Kostoff, D., Cytogenetics of the genus Nicotiana. Karyosystematics, genetics, cytology, cytogenetics and the phylesis of tobaccos. State Printing House, Sofia. 1943, 1071 pp.Google Scholar
  10. 10.
    Krishnamurty, K. V. and Bhat, N. R., An amphidiploid of Nicotiana-glutinosa × Nicotiana-trigonophylla Dun. hybrid. Current Science, 26 (1957): 120.Google Scholar
  11. 11.
    Krishnamurty, K. V. and Bhat, N. R., The cytogenetics of the amphiploid Nicotiana-glutinosa × N. trigonophylla. Ind. J. Genet. & Pl. Breed. 18 (1958): 224–237.Google Scholar
  12. 12.
    Lehmann, H., On interspecific cross sterility in the genus Nicotiana. Plant Breed. Abst. 7 (1936), abst. 1023.Google Scholar
  13. 13.
    McCray, F. A., A partially fertile triple species hybrid in Nicotiana. Genetics 17 (1932): 660–673.Google Scholar
  14. 14.
    Modilewski, J., Cytogenetic investigations of the genus Nicotiana. VII. Crossing amphidiploid N. disualovii with some species of genus Nicotiana. J. Inst. Bot. Acad. Sci., Ukraine 1939 no. 21–22 (29–30): 107–137.Google Scholar
  15. 15.
    Swaminathan, M. S., Magoon, M. L. and Mehra, K. L., A simple propiono-carmine PMC smear method for plants with small chromosomes. Ind. Jr. Gen. Plant Breed. 14 (1954): 87–88.Google Scholar
  16. 16.
    Takenaka, Y., Cytogenetic studies of Nicotiana. V. Bot. Mag. Tokyo 66 (1955): 271–276.Google Scholar

Copyright information

© H. Veenman En Zonen N.V. 1960

Authors and Affiliations

  • K. V. Krishnamurty
    • 1
  • G. S. Murty
    • 1
  • K. Appa Rao
    • 1
  1. 1.Central Tobacco Research InstituteRajahmundryIndia

Personalised recommendations