Advertisement

Euphytica

, Volume 51, Issue 1, pp 1–9 | Cite as

Induced parthenogenesis in kiwifruit (Actinidia deliciosa) through the use of lethally irradiated pollen

  • K. K. Pandey
  • L. Przywara
  • P. M. Sanders
Article

Summary

Parthenogenetic development of seeds after pollination with irradiated pollen was studied in the dioecious species Actinidia deliciosa (kiwifruit). In total, 479 pollinations were made involving three recipient female cultivars, with five male and two hermaphrodite pollen donors. Pollen was irradiated with doses of 0.5, 0.7 and 0.9 kGy, all three doses produced parthenogenetic seeds. The 0.7 kGy dose yielded the highest number of germinating seeds (708 of a total of 723), of which 609 developed into seedlings, and 334 survived to grow into plants. Ploidy level was evaluated by cytological studies and stomatal guard cell size. In a total of 416 seedlings and plants evaluated, 332 plants were hexaploid (‘diploid’ 2n=170) and 84 plants were triploids (‘haploids’ 2n=85).

Key words

Actinidia deliciosa kiwifruit diploidy haploidy induced parthenogenesis pollen irradiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdalla, M.M.F. & J.G.T.H. Hermsen, 1972. Diploid parthenogenesis and andro-genesis in diploid Solanum. Euphytica 21: 426–431.Google Scholar
  2. Asker, S., 1979. Progress in apomixis research. Hereditas 91: 231–240.Google Scholar
  3. Asker, S., 1980. Gametophytic apomixis: elements and genetic regulation. Hereditas 93: 277–293.Google Scholar
  4. Dickinson, W.C., 1972. Observations of the floral morphology of some species of Saurauia, Actinidia and Clematoclethra. J. Elisha Mitchell Sci. Soc. 88: 43–54.Google Scholar
  5. Chase, S.S., 1969. Monoploids and monoploid-derivatives of maize (Zea mays L.). Bot. Rev. 35: 117–167.Google Scholar
  6. Eenink, A.H., 1974. Matromorphy in Brassica oleracea L. I. terminology, parthenogenesis in Cruciferae and the formation and usability of matromorphic plants. Euphytica 23: 429–433.Google Scholar
  7. Ferguson, A.R., 1983. Hayward Reginal Wright. Nurseryman, the importer and raiser of new fruits. Ann. J. N. Z. Inst. Hort. 11: 36–56.Google Scholar
  8. Ford, I., 1971. Chinese gooseberry pollination. N. Z. J. Agric. 122: 34–35.Google Scholar
  9. Fraser, L.G. & C.F. Harvey, 1986a. The use of tissue culture techniques in kiwifruit breeding. In: DSIR Plant Breeding Symposium 1986. N. Z. Agron. Soc. Special Publication 5: 369–370.Google Scholar
  10. Fraser, L.G. & C.F. Harvey, 1986b. Somatic embryogenesis from anther derived callus in two Actinidia species. Sci. Hort. 29: 335–346.Google Scholar
  11. Guédès, M. & R. Schmid, 1978. The peltate (ascidiate) carpel theory and carpel peltation in Actinidia chinensis (Actinidiaceae). Flora 167: 525–543.Google Scholar
  12. Gustafsson, A., 1946. Apomixis in higher plants. Part I. The mechanisms of apomixis. Lunds Univ. Arsskr. N. F. Avd. 2: 1–66.Google Scholar
  13. Horn, W., 1977. Parthenogenetic and androgenetic offspring from interspecific crosses in Begonia. In: Interspecific hybridization in plant breeding. Proc. 8th Eucarpia Cong., Madrid, Spain pp. 351–355.Google Scholar
  14. Hougas, R.W., S.J. Peloquin & A.C. Gabert, 1964. Effect of seed-parent and pollinator on frequency of haploids in Solanum tuberosum. Crop. Sci. 4: 593–595.Google Scholar
  15. Jensen, C.J., 1986. Haploid induction and production in crop plants. In: Horn Jensen, Odenbach Schieder (Eds.) Genetic Manipulation in Plant Breeding. Walter de Gruyter & Co, Berlin. New York pp. 231–256.Google Scholar
  16. Kasha, K.J., 1974. Haploids from somatic cells. In: K.J. Kasha (Ed.) Haploids in higher plants—advances and potential. The Univ. Guelph, Guelph (Canada) pp. 67–87.Google Scholar
  17. Kasha, K.J. & G. Seguin-Swartz, 1983. Haploidy in crop improvement. In: M.S. Swaminathan, P.K. Gupta and U. Sinha (Eds.) Cytogenetics of crop plants. Macmillan India Lt. pp. 19–68.Google Scholar
  18. Kimber, G. & R. Riley, 1963. Haploid angiosperms. Bot. Rev. 29: 480–531.Google Scholar
  19. Lacadena, J.R., 1974. Spontaneous and induced parthenogenesis and androgenesis. In: K.J. Kasha (Ed.) Haploids in higher plant—Advances and potential. The Univ. Guelph, Guelph (Canada) pp. 13–32.Google Scholar
  20. Lawes, G.S. & D.R. Anderson, 1980. Influence of temperature and gibberellic acid on kiwifruit (Actindia chinensis) seed germination. N. Z. J. Exp. Agric. 8: 277–280.Google Scholar
  21. Liang, C.F., 1983. On the distribution of Actinidia. Guangxi Flora Guihaia 3: 229–248.Google Scholar
  22. Mackay, G.R., 1972. On the genetic status of maternals induced by pollination of Brassica oleracea L. with Brassica campestris L. Euphytica 21: 71–77.Google Scholar
  23. Maheshwari, S.C., A.K. Tyagi, K. Malhatra & S.K. Sopory, 1980. Induction of haploids from pollen grains in angiosperms—the current status. Theor. Appl. Genet. 58: 193–206.Google Scholar
  24. Murashige, T. & F. Skoog, 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473–497.Google Scholar
  25. Nicoll, M.F., G.P. Chapman & D.J. James, 1987. Endosperm responses to irradiated pollen in apples. Theor. Appl. Genet. 74: 508–515.Google Scholar
  26. Nitsch, J.P., 1951. Growth and development in vitro of excised ovaries. Am. J. Bot. 38: 566–577.Google Scholar
  27. Nygren, A., 1954. Apomixis in the angiosperms II. Bot. Rev. 20: 577–549.Google Scholar
  28. Olsson, G., 1960. Species crosses within the genus Brassica II. Artificial B. napus. Hereditas 46: 331–338.Google Scholar
  29. Palmer-Jones, T. & P.G. Clinch, 1974. Observations on the pollination of Chinese gooseberry variety ‘Hayward’. N.Z.J. Exp. Agric. 2: 455–458.Google Scholar
  30. Pandey, K.K., 1974a. Overcoming interspecific pollen incompatibility through the use of ionising radiation. Heredity 33: 279–284.Google Scholar
  31. Pandey, K.K., 1974b. Elimination of heterozygosity and efficiency of genetic systems. Theor. Appl. Genet. 44: 199–205.Google Scholar
  32. Pandey, K.K., 1975. Sexual transfer of specific genes without gametic fusion. Nature 256: 310–313.Google Scholar
  33. Pandey, K.K., 1977. Mentor pollen: possible role of wall-held pollen growth promoting substances in overcoming intra-and interspecific incompatibility. Genetica 47: 219–229.Google Scholar
  34. Pandey, K.K., 1980. Parthenogenetic diploidy and egg transformation induced by irradiated pollen in Nicotiana. N. Z. J. Bot. 18: 203–207.Google Scholar
  35. Pandey, K.K. & M. Phung, 1982. ‘Hertwig effect’ in plants: induced parthenogenesis through the use of irradiated pollen. Theor. Appl. Genet. 62: 295–300.Google Scholar
  36. Przywara, L. & E. Kuta, 1983. An acetic-haematoxylin method in cytological investigations of Bryophyta. Bryologist 86: 141–143.Google Scholar
  37. Przywara, L., K.K. Pandey & P.M. Sanders, 1988. The length of stomata as an indicator of ploidy level in kiwifruit. N. Z. J. Bot. 26: 179–182.Google Scholar
  38. Rangaswamy, N.S., 1961. Experimental studies on female reproductive structures of Citrus microcarpa Bunge. Phytomorphology 11: 109–127.Google Scholar
  39. Rowe, P.R., 1974. Methods of production haploids: parthenogenesis following interspecific hybridization. In: K.J. Kasha (Ed.) Haploids in higher plants—advances and potential. The Univ. Guelph, Guelph (Canada) pp. 43–52.Google Scholar
  40. Sale, P.R., 1983. Kiwifruit culture. Min. Agric. Fisheries Bull. 349: 1–93.Google Scholar
  41. San Noeum, L.H. & N. Ahmadi, 1982. Variability of doubled haploids from in vitro androgenesis and gynogenesis in Hordeum vulgare L. In: E.D. Earle & Y. Demerly (Eds.) Variability in plants regenerated from tissue culture. Praeger Publishers, New York pp. 273–283.Google Scholar
  42. San, L.H. & Y. Demerly, 1984. Gynogenesis in vitro and biometric studies of doubled haploids obtained by three techniques in Hordeum vulgare L. In: W. Lange, A.C. Zeven & N.G. Hogenboom (Eds.) Efficiency in plant breeding. Proc. 10th Cong. Eucarpia. Pudoc, Wageningen pp. 347.Google Scholar
  43. Schroeder, C.A. & W.A. Fletcher, 1967. The Chinese gooseberry (Actinidia chinensis) in New Zealand. Econ. Bot. 21: 81–92.Google Scholar
  44. Smith, R.L. & S.J. Toy, 1967. Effects of stratification and alternating temperature on seed germination of the Chinese gooseberry, Actinidia chinensis Planch. Proc. Am. Soc. Hort. Sc. 90: 409–412.Google Scholar
  45. Stettler, R.F., K.S. Bawa & G.K. Livingston, 1969. Experimental induction of haploid parthenogenesis in forest trees. In: Induced mutations in plants. IAEA & FAO. Wash pp. 611–619.Google Scholar
  46. Vassileva-Dryanovska, O.A., 1966a. Development of embryo and endosperm produced after irradiation of pollen in Tradescantia. Hereditas 55: 129–147.Google Scholar
  47. Vassileva-Dryanovska, O.A., 1966. The induction of haploid embryos and tetraploid endosperm nuclei with irradiated pollen in Lilium. Hereditas 55: 160–165.Google Scholar
  48. Virk, D.S., S.J. Dhahi & R.J. Brumpton, 1977. Matromorphy in Nicotiana rustica. Heredity 39: 287–295.Google Scholar
  49. Wenzel, G., 1980. Recent progress in microspore culture of crop plants. In: D.R. Davis & D.A. Hopwood (Eds.) The plant genome. The John Innes Charity Norwich pp. 171–183.Google Scholar
  50. Williams, E.G. & G.De Latour, 1980. The use of embryo culture with transplanted nurse endosperm for the production of interspecific hybrids in pasture legumes. Bot. Gaz. 141: 252–257.Google Scholar
  51. Zhang, J. & E.J. Beuzenberg, 1983. Chromosome numbers in two varieties of Actinidia chinensis Planch. N. Z. J. Bot. 21: 353–355.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • K. K. Pandey
    • 1
  • L. Przywara
    • 1
    • 2
  • P. M. Sanders
    • 1
  1. 1.Grasslands DivisionDSIRPalmerston NorthNew Zealand
  2. 2.Jagiellonian UniversityKrakówPoland

Personalised recommendations