, Volume 22, Issue 2, pp 219–233 | Cite as

A model for incongruity in intimate partner relationships

  • N. G. Hogenboom


A model for incongruity in intimate partner relationships is described. The model is tested with results from earlier research on intimate partner relationships in plants and these results are reinterpreted. It is demonstrated that in relationships between partners from different populations incongruity, i.e. non-functioning of a partner relationship resulting from a lack of genetic information in one partner about the other, plays a major role, while that of incompatibility is secondary or absent. Sexual partner relationships and host-parasite relationships are shown to be essentially similar as regards their genetic basis. Some practical implications of incongruity are mentioned.


Plant Physiology Sexual Partner Genetic Basis Genetic Information Intimate Partner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdalla, M. M. F. & J. G. Th. Hermsen, 1972. Unilateral incompatibility: hypotheses, debate and its implications for plant breeding. Euphytica 21: 32–47.CrossRefGoogle Scholar
  2. Anderson, E. & D. de Winton, 1931. The genetic analysis of an unusual relationship between self-sterility and self-fertility in Nicotiana. Ann. Mo. bot. Gdn. 18: 97–116.Google Scholar
  3. Arasu, N. T., 1968. Self-incompatibility in angiosperms: a review. Genetica 39: 1–24.Google Scholar
  4. Ascher, P. D., 1966. A gene action model to explain gametophytic self-incompatibility. Euphytica 15: 179–183.Google Scholar
  5. Bateman, A. J., 1943. Specific differences in Petunia. II. Pollen growth. J. Genet. 45: 236–242.Google Scholar
  6. Bellartz, S., 1956. Das Pollenschlauchwachstum nach arteigener und artfremder Bestäubung einiger Solanaceen und die Inhaltsstoffe ihres Pollens und ihrer Griffel. Planta 47: 588–612.Google Scholar
  7. Burgeff, H., 1920. Sexualität und Parasitismus bei Mucorineen. Ber. dt. bot. Ges. 38: 318–327.Google Scholar
  8. Chmielewski, T., 1962. Cytogenetical and taxonomical studies on a new tomato form. Part I. Genet. pol. 3: 253–264.Google Scholar
  9. Chmielewski, T., 1966. An exception to the unidirectional crossability pattern in the genus Lycopersicon. Genet. pol. 7: 31–39.Google Scholar
  10. Chmielewski, T., 1968. Cytogenetical and taxonomical studies on a new tomato form. Part II. Genet. pol. 9: 97–124.Google Scholar
  11. Dobzhansky, T., 1947. Genetics and the origin of species. 2nd ed. Columbia University Press, New York.Google Scholar
  12. East, E. M., 1929. Self-sterility. Biblphia Genet. 5: 331–368.Google Scholar
  13. Esser, K., 1967. Die Verbreitung der Incompatibilität bei Thallophyten. Handb. PflPhysiol. 18: 321–343.Google Scholar
  14. Flor, H. H., 1955. Host-parasite interaction in flax rust-its genetics and other implications. Phytopathology 45: 680–685.Google Scholar
  15. Flor, H. H., 1956. The complementary genic systems in flax and flax rust. Adv. Genet. 8: 29–54.Google Scholar
  16. Fuchs, W. H., 1971. Physiological and biochemical aspects of resistance to diseases. Mutation breeding for disease resistance, IAEA, Vienna: 5–16.Google Scholar
  17. Gardé, N. M., 1959. Mechanisms of species isolation in tuberous Solanum. Agronomia lusit. 21: 19–42.Google Scholar
  18. Gardella, C., 1950. Overcoming barriers to crossability due to style length. Am. J. Bot. 37: 219–224.Google Scholar
  19. Grant, V., 1966. The selective origin of incompatibility barriers in the plant genus Gilia. Am. Nat. 100: 99–118.CrossRefGoogle Scholar
  20. Grant, V., 1971. Plant speciation. Columbia University Press, New York and London.Google Scholar
  21. Grun, P., 1961. Early stages in the formation of internal barriers to gene exchange between diploid species of Solanum. Am. J. Bot. 48: 79–89.Google Scholar
  22. Grun, P. & M. Aubertin, 1966. The inheritance and expression of unilateral incompatibility in Solanum. Heredity 21: 131–138.Google Scholar
  23. Grun, P. & A. Radlow, 1961. Evolution of barriers to crossing of self-incompatible with self-compatible species of Solanum. Heredity 16: 137–143.Google Scholar
  24. Günther, E. & B. Jüttersonke, 1971. Untersuchungen über die Kreuzungsinkompatibilität zwischen Lycopersicon peruvianum (L.) Mill. und Lycopersicon esculentum Mill. und den reziproken Bastarden. Biol. Zbl. 90: 561–574.Google Scholar
  25. Hardon, J. J., 1967. Unilateral incompatibility between Solanum pennellii and Lycopersicon esculentum. Genetics 57: 795–808.Google Scholar
  26. Haustein, E., 1967. Befruchtung der Archegoniaten und Blütenpflanzen. Handb. PflPhysiol. 18: 407–446.Google Scholar
  27. Hogenboom, N. G., 1972a. Breaking breeding barriers in Lycopersicon. 4. Breakdown of unilateral incompatibility between L. peruvianum (L.) Mill. and L. esculentum Mill. Euphytica 21: 397–404.Google Scholar
  28. Hogenboom, N. G., 1972b. Breaking breeding barriers in Lycopersicon. 5. The inheritance of the unilateral incompatibility between L. peruvianum (L.) Mill. and L. esculentum Mill. and the genetics of its breakdown. Euphytica 21: 405–414.Google Scholar
  29. Kapoor, M., 1967. Bacterial conjugation. Handb. PflPhysiol. 18: 5–30.Google Scholar
  30. Knox, R. B., R. R. Willing & A. E. Ashford, 1972. Role of pollen-wall proteins as recognition substances in interspecific incompatibility in poplars. Nature 237: 381–383.Google Scholar
  31. Köhler, K., 1967. Die chemischen Grundlagen der Befruchtung (Gamone). Handb. PflPhysiol. 18: 282–320.Google Scholar
  32. Laven, H., 1967. Eradication of Culex pipiens fatigans through cytoplasmic incompatibility. Nature 216: 383–384.PubMedGoogle Scholar
  33. Lewis, D., 1965. A protein dimer hypothesis on incompatibility. Genet. Today 3: 657–663.Google Scholar
  34. Lewis, D. & L. K. Crowe, 1958. Unilateral interspecific incompatibility in flowering plants. Heredity 12: 233–256.Google Scholar
  35. Linskens, H. F., 1967. Pollen. Handb. PflPhysiol. 18: 368–406.Google Scholar
  36. Linskens, H. F., 1968. Egg-sperm interactions in higher plants. Accademia Nazionale Dei Lincei, Quaderno 104: 47–56.Google Scholar
  37. Martin, F. W., 1961a. The inheritance of self-incompatibility in hybrids of Lycopersicon esculentum Mill. × L. chilense Dun. Genetics 46: 1443–1454.Google Scholar
  38. Martin, F. W., 1961b. Complex unilateral hybridization in Lycopersicon hirsutum. Proc. natn. Acad. Sci. USA 47: 855–857.Google Scholar
  39. Martin, F. W., 1963. Distribution and interrelationships of incompatibility barriers in the Lycopersicon hirsutum Humb. and Bonpl. complex. Evolution 17: 519–528.Google Scholar
  40. Martin, F. W., 1964. The inheritance of unilateral incompatibility in Lycopersicon hirsutum. Genetics 50: 459–469.Google Scholar
  41. Martin, F. W., 1967. The genetic control of unilateral incompatibility between two tomato species. Genetics 56: 391–398.Google Scholar
  42. Martin, F. W., 1968. The behaviour of Lycopersicon incompatibility alleles in an alien genetic milieu. Genetics 60: 101–109.Google Scholar
  43. Mather, K., 1943. Specific differences in Petunia. I. Incompatibility. J. Genet. 45: 215–235.Google Scholar
  44. McGuire, D. C. & C. M. Rick, 1954. Self-incompatibility in species of Lycopersicon sect. Eriopersicon and hybrids with L. esculentum. Hilgardia 23: 101–124.Google Scholar
  45. Pandey, K. K., 1957. A self-compatible hybrid from a cross between two self-incompatible species in Trifolium. J. Hered. 48: 278–281.Google Scholar
  46. Pandey, K. K., 1962. Interspecific incompatibility in Solanum species. Am. J. Bot. 49: 874–882.Google Scholar
  47. Pandey, K. K., 1964. Elements of the S-gene complex. Genet. Res. 5: 397–409.Google Scholar
  48. Pandey, K. K., 1967a. Origin of genetic variability: Combinations of peroxidase isozymes determine multiple allelism of the S-gene. Nature, Lond. 213: 669–672.Google Scholar
  49. Pandey, K. K., 1967b. S-gene polymorphism in Nicotiana. Genet. Res. 10: 251–259.Google Scholar
  50. Pandey, K. K., 1968. Compatibility relationships in flowering plants: role of the S-gene complex. Am. Nat. 102: 475–489.CrossRefGoogle Scholar
  51. Pandey, K. K., 1969a. Elements of the S-gene complex. IV. S-allele polymorphism in Nicotiana species. Heredity 24: 601–619.Google Scholar
  52. Pandey, K. K., 1969b. Elements of the S-gene complex. V. Interspecific cross-compatibility relationships and theory of the evolution of the S complex. Genetica 40: 447–474.Google Scholar
  53. Person, C., 1959. Gene-for-gene relationships in host: parasite systems. Can. J. Bot. 37: 1101–1130.Google Scholar
  54. Rick, C. M., 1960. Hybridization between Lycopersicon esculentum and Solanum pennellii: phylogenetic and cytogenetic significance. Proc. natn. Acad. Sci. USA 46: 78–82.Google Scholar
  55. Rieger, R., A. Michaelis, & M. M. Green, 1968. A glossary of genetics and cytogenetics. Springer, Berlin-Heidelberg-New York.Google Scholar
  56. Rosen, W. G., 1971. Pistil-pollen interactions in Lilium. In: J. Heslop-Harrison (Ed.), Pollen: development and physiology, p. 239–254. Butterworths, London.Google Scholar
  57. Sampson, D. R., 1960. An hypothesis of gene interaction at the S locus in self-incompatibility systems of angiosperms. Am. Nat. 94: 283–292.CrossRefGoogle Scholar
  58. Sampson, D. R., 1962. Intergeneric pollen-stigma incompatibility in the Cruciferae. Can. J. Genet. Cytol. 4: 38–49.Google Scholar
  59. Sanz, C., 1945. Pollen-tube growth in intergeneric pollinations on Datura stramonium. Proc. natn. Acad. Sci. USA 31: 361–367.Google Scholar
  60. Simmonds, N. W., 1966. Linkage to the S-locus in diploid potatoes. Heredity 21: 473–479.Google Scholar
  61. Smith, E. B., 1968. Pollen competition and relatedness in Haplopappus section Isopappus. Bot. Gaz. 129: 371–373.CrossRefGoogle Scholar
  62. Stanley, R. G., 1971. Pollen chemistry and tube growth. In: J. Heslop-Harrison (Ed.), Pollen: development and physiology. Butterworths, London, 131–155.Google Scholar
  63. Stebbins, G. L., 1950. Variation and evolution in plants. Columbia University Press, New York.Google Scholar
  64. Stebbins, G. L., 1957. Self fertilization and population variability in the higher plants. Am. Nat. 91: 337–354.CrossRefGoogle Scholar
  65. Stout, A. B., 1952. Reproduction in Petunia. Mem. Torrey bot. Club 20: 1–202.Google Scholar
  66. Swaminathan, M. S. & B. R. Murty, 1957. One-way incompatibility in some species crosses in the genus Nicotiana. Indian J. Genet. Pl. Breed. 17: 23–26.Google Scholar
  67. Swaminathan, M. S. & B. R. Murty, 1959. Effect of X-radiation on pollen tube growth and seed setting in crosses between Nicotiana tabacum and N. rustica. Z. Vererblehre 90: 393–399.Google Scholar
  68. Weidel, W., 1958. Bacterial viruses (with particular reference to adsorption/penetration). A. Rev. Microbiol. 12: 27–48.CrossRefGoogle Scholar

Copyright information

© H. Veenman en Zonen N.V 1973

Authors and Affiliations

  • N. G. Hogenboom
    • 1
  1. 1.Institute for Horticultural Plant Breeding (IVT)Wageningenthe Netherlands

Personalised recommendations