Advertisement

Euphytica

, Volume 79, Issue 3, pp 227–234 | Cite as

Photomorphogenic mutants of tomato

  • R. E. Kendrick
  • L. H. J. Kerckhoffs
  • A. S. Pundsnes
  • A. Van Tuinen
  • M. Koorneef
  • A. Nagatani
  • M. J. Terry
  • A. Tretyn
  • M. -M. Cordonnier-Pratt
  • B. Hauser
  • L. H. Pratt
Article

Abstract

Photomorphogenesis of tomato is being studied with the aid of mutants which are either modified in their photoreceptor composition or in their signal transduction chain(s). Several mutants affecting the phytochrome family of photoreceptors, some of which appear deficient for specific genes encoding phytochrome apoproteins have been isolated. In addition, other mutants, including transgenic lines overexpressing phytochrome A, exhibit exaggerated photomorphogenesis during de-etiolation. Anthocyanin biosynthesis and plastid development are being used as model systems for the dissection of the complex interactions among photomorphogenic photoreceptors and to elucidate the nature of their transduction chains.

Key words

Lycopersicon esculentum photomorphogenesis phytochrome signal transduction chromophore aurea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamse, P., P.A.P.M. Jaspers, J.A. Bakker, J.C. Wesselius, G.H. Heeringa, R.E. Kendrick & M. Koornneef, 1988. Photophysiology of a tomato mutant deficient in labile phytochrome. J. Plant Physiol. 133: 436–440.Google Scholar
  2. Adamse, P., J.L. Peters, P.A.P.M. Jaspers, A.Van Tuinen, M. Koornneef & R.E. Kendrick, 1989. Photocontrol of anthocyanin synthesis in tomato seedlings: a genetic approach. Photochem. Photobiol. 50: 107–111.Google Scholar
  3. Becker, T.W., C. Foyer & M. Caboche, 1992. Light-regulated expression of the nitrate-reductase and nitrite-reductase genes in tomato and in the phytochrome-deficient aurea mutant of tomato. Planta 188: 39–47.Google Scholar
  4. Bowler, C., G. Neuhaus, H. Yamagata & N.-H. Chua, 1994. Cyclic GMP and calcium mediate phytochrome phototransduction. Cell 77: 73–81.Google Scholar
  5. Boylan, M.T. & P.H. Quail, 1989. Oat phytochrome is biologically active in transgenic tomatoes. Plant Cell 1: 765–773.Google Scholar
  6. Bardick, A.B., 1958. New mutants. Tomato Genet. Coop. Rep. 8: 9–11.Google Scholar
  7. Casal, J.J. & R.E. Kendrick, 1993. Impaired phytochrome-mediated shade-avoidance responses in the aurea mutant of tomato. Plant Cell Environ. 16: 703–710.Google Scholar
  8. Clack, T., S. Mathews & R.A. Sharrock, 1994. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: The sequences and expression of PHYD and PHYE. Plant Mol. Biol. (in press).Google Scholar
  9. Cordonnier-Pratt, M.-M., L.H. Pratt, B. Hauser, G. Kochert & M. Caboche, 1994. Comparative analysis of the phytochrome gene family in tomato (Lycopersicon esculentum Mill.) and sorghum (Sorghum bicolor [L.] Moench). Plant Physiol. 105 (Suppl.): 72.Google Scholar
  10. Georghiou, K. & R.E. Kendrick, 1991. The germination characteristics of phytochrome-deficient aurea mutant tomato seeds. Physiol. Plant 82: 127–133.Google Scholar
  11. Goud, K.V., R. Sharma, R.E. Kendrick & M. Furuya, 1991. Photoregulation of phenylalanine ammonia lyase is not correlated with anthocyanin induction in photomorphogenic mutants of tomato (Lycopersicon esculentum). Plant Cell. Physiol. 32: 1251–1258.Google Scholar
  12. Goud, K.V. & R. Sharma (1994) Regulation of photoinduction of cytosolic enzymes in aurea mutant of tomato (Lycopersicon esculentum). Plant Physiol. 105: 643–650.Google Scholar
  13. Hauser, B., M.-M. Cordonnier-Pratt & L.H. Pratt, 1994. Differential expression of five phytochrome genes in tomato (Lycopersicon esculentum Mill.). Plant Physiol. 105 (Suppl.): 72.Google Scholar
  14. Kendrick, R.E. & G.H.M. Kronenberg, 1994. Photomorphogenesis in Plants. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  15. Ken-Dror, S. & B.A. Horwitz, 1990. Altered phytochrome regulation of greening in an aurea mutant of tomato. Plant Physiol. 92: 1004–1008.Google Scholar
  16. Kerckhoffs, L.H.J., R.E. Kendrick, G.C. Whitelam & H. Smith, 1992. Response of photomorphogenic tomato mutants to changes in the phytochrome photoequilibrium during the daily photoperiod. Photochem. Photobiol. 56: 611–616.Google Scholar
  17. Kerr, E.A., 1965. Identification of high-pigment, hp, tomatoes in the seedling stage. Can. J. Plant Sci. 45: 104–105.Google Scholar
  18. Kerr, E.A., 1979. Yellow-green-2 (yg-2) may be on chromosome 12. Tomato Genet. Coop. Rep. 29: 27–28.Google Scholar
  19. Kerr, E.A., 1981. Yellow-green-2 (yg-2) and auroid (aud) are alleles. Tomato Genet. Coop. Rep. 31: 8.Google Scholar
  20. Khush, G.S. & C.M. Rick, 1968. Cytogenetic analysis of the tomato genome by means of induced deficiencies. Chromosoma 23: 452–484.Google Scholar
  21. Koornneef, M., J.H.van der Veen, C.J.P. Spruit & C.M. Karssen, 1981. Isolation and use of mutants with an altered germination behaviour in Arabidopsis thaliana and tomato. In: Induced Mutations—A Tool in Plant Breeding, pp. 227–232. International Atomic Energy Agency, Vienna.Google Scholar
  22. Koornneef, M., J.W. Cone, R.G. Dekens, E.G. O'Herne-Robers, C.J.P. Spruit & R.E. Kendrick, 1985. Photomorphogenic responses of long hypocotyl mutants of tomato. J. Plant Physiol. 120: 153–165.Google Scholar
  23. Koornneef, M. & R.E. Kendrick, 1994. Photomorphogenic mutants of higher plants. In: Kendrick, R.E. & G.H.M. Kronenberg (Eds.), Photomorphogenesis in Plants, pp. 601–628. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  24. Lipucci di Paola, M., F. Collina Grenci, L. Caltavuturo, F. Tognoni & B. Lercari, 1988. A phytochrome mutant from tissue culture of tomato. Adv. Hort. Sci. 2: 30–32.Google Scholar
  25. López-Juez, E., A. Nagatani, W.F. Buurmeijer, J.L. Peters, R.E. Kendrick & J.C. Wesselius, 1990. Response of light-grown wild-type and aurea-mutant tomato plants to end-of-day far-red light. J. Photochem. Photobiol. B: Biology 4: 391–405.Google Scholar
  26. McCormac, A.C., 1993. Photoregulation by the phytochrome family: A physiological study of transgenic plants. PhD Thesis, University of Leicester, UK.Google Scholar
  27. Mochizuki, T. & S. Kamimura, 1985. Photoselective method for selection of hp at the cotyledon stage. Tomato Genet. Coop. Rep. 35: 12–13.Google Scholar
  28. Mohr, H., 1994. Coaction between pigment systems. In: Kendrick, R.E. & G.H.M. Kronenberg (Eds.), Photomorphogenesis in Plants, pp. 353–373. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  29. Neuhaus, G., C. Bowler, R. Kern & N.-H. Chua, 1993. Calcium/calmodulin-dependent and-independent phytochrome signal transduction pathways. Cell 73: 937–952.Google Scholar
  30. Oelmüller, R., R.E. Kendrick & W.R. Briggs, 1989. Blue-light mediated accumulation of nuclear-encoded transcripts coding for proteins of the thylakoid membrane is absent in the phytochrome-deficient aurea-mutant of tomato. Plant Mol. Biol. 13: 223–232.Google Scholar
  31. Oelmüller, R. & R.E. Kendrick, 1991. Blue light is required for survival of the tomato phytochrome-deficient aurea mutant and the expression of four nuclear genes coding for plastidic proteins. Plant Mol. Biol. 16: 293–299.Google Scholar
  32. Parks, B.M. & P.H. Quail, 1991. Phytochrome-deficient hy1 and hy2 long hypocotyl mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis. Plant Cell 5: 39–48.Google Scholar
  33. Parks, B.M., A.M. Jones, P. Adamse, M. Koornneef, R.E. Kendrick & P.H. Quail, 1987. The aurea mutant of tomato is deficient in spectrophotometrically and immunochemically detectable phytochrome. Plant Mol. Biol. 9: 97–107.Google Scholar
  34. Peters, J.L., A.van Tuinen, P. Adamse, R.E. Kendrick & M. Koornneef, 1989. High pigment mutants of tomato exhibit high sensitivity for phytochrome action. J. Plant Physiol. 134: 661–666.Google Scholar
  35. Peters, J.L., M.E.L. Schreuder, G.H. Heeringa, J.C. Wesselius, R.E. Kendrick & M. Koornneef, 1992a. Analysis of the response of photomorphogenetic tomato mutants to end-of-day far-red light. Acta Hort. 305: 67–77.Google Scholar
  36. Peters, J.L., M.E.L. Schreuder, S.J.W. Verduin & R.E. Kendrick, 1992b. Physiological characterization of a high pigment mutant of tomato. Photochem. Photobiol. 56: 75–82.Google Scholar
  37. Quail, P.H., 1994. Phytochrome genes and their expression. In: Kendrick, R.E. & G.H.M. Kronenberg (Eds.), Photomorphogenesis in Plants, pp. 71–104. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  38. Quail, P.H., W.R. Briggs, J. Chory, R.P. Hangarter, N.P. Harberd, R.E. Kendrick, M. Koornneef, B. Parks, R.A. Sharrock, E. Schäfer, W.F. Thompson & G.C. Whitelam, 1994. Spotlight on phytochrome nomenclature. Plant Cell 6: 468–471.Google Scholar
  39. Raynard, G.B., 1956. Origin of the Webb Special (Back Queen) tomato. Tomato Genet. Coop. Rep. 6: 22.Google Scholar
  40. Rick, C.M., 1974. High soluble-solids content in large-fruited tomato lines derived from a wild green-fruited species. Hilgardia 42: 493–510.Google Scholar
  41. Rick, C.M., A.F. Reeves & R.W. Zobel, 1968. Inheritance and linkage relations of four new mutants. Tomato Genet. Coop. Rep. 18: 34–35.Google Scholar
  42. Sanders, D.C., D.M. Pharr & T.R. Konsler, 1975. Chlorophyll content of a dark green mutant of ‘Manapal’ tomato. Hort Sci. 10: 262–34.Google Scholar
  43. Sharma, R., E. López-Juez, A. Nagatani & M. Furuya, 1993. Identification of photo-inactive phytochrome A in etiolated seedlings and photo-active phytochrome B in green leaves of the aurea mutant of tomato. Plant J. 4: 1035–1042.Google Scholar
  44. Sharrock, R.A., B.M. Parks, M. Koornneef & P.H. Quail, 1988. Molecular analysis of the phytochrome deficiency in an aurea mutant of tomato. Mol. Gen. Genet. 213: 9–14.Google Scholar
  45. Sharrock, R.A. & P.H. Quail, 1989. Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Develop. 3: 1745–1757.Google Scholar
  46. Soressi, G.P. & F. Salamini, 1975. New spontaneous or chemically-induced fruit ripening tomato mutants. Tomato Genet. Coop. Rep. 25: 21–22.Google Scholar
  47. Thompson, A.E., R.W. Hepler & E.A. Kerr, 1962. Clarification of the inheritance of high total carotenoid pigments in tomato. Am. Soc. Hort. Sci. 81: 434–442.Google Scholar
  48. Van Tuinen, A., L.H.J. Kerckhoffs, A. Nagatani, R.E. Kendrick & M. Koornneef, 1994. Far-red light-insensitive mutants of tomato. Mol. Gen. Genet. (in press).Google Scholar
  49. Von Wettstein Knowles, P., 1968. Mutants affecting anthocyanin synthesis in the tomato. II. Physiology. Hereditas 61: 255–275.Google Scholar
  50. Whitelam, G.C. & H. Smith, 1991. Retention of phytochrome-mediated shade avoidance response in phytochrome-deficient mutants of Arabidopsis, cucumber and tomato. J. Plant Physiol. 139: 119–125.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • R. E. Kendrick
    • 1
    • 3
  • L. H. J. Kerckhoffs
    • 1
    • 3
    • 5
  • A. S. Pundsnes
    • 1
    • 3
  • A. Van Tuinen
    • 2
    • 3
  • M. Koorneef
    • 2
  • A. Nagatani
    • 3
  • M. J. Terry
    • 3
  • A. Tretyn
    • 3
    • 4
  • M. -M. Cordonnier-Pratt
    • 5
  • B. Hauser
    • 5
  • L. H. Pratt
    • 5
  1. 1.Department of Plant PhysiologyWageningen Agricultural UniversityWageningenThe Netherlands
  2. 2.Department of GeneticsWageningen Agricultural UniversityWageningenThe Netherlands
  3. 3.Laboratory for Photoperception and Signal Transduction, Frontier Research ProgramInstitute of Physical and Chemical Research (RIKEN)Wako City, SaitamaJapan
  4. 4.Isotope and Instrumentation Laboratory, Department of Plant Physiology and Morphogenesis, Institute of BiologyNicolaus Copernicus UniversityToruñPoland
  5. 5.Botany DepartmentUniversity of GeorgiaAthensUSA

Personalised recommendations