Advertisement

Euphytica

, Volume 79, Issue 3, pp 169–174 | Cite as

Genetic and molecular organization of the short arm and pericentromeric region of tomato chromsome 6

  • Monique F. Van Wordragen
  • Rob Weide
  • Tsvetana Liharska
  • Annemieke Van Der Steen
  • Maarten Koornneef
  • Pim Zabel
Article

Abstract

We have previously presented an integrated linkage map of tomato chromosome 6, that showed the position of restriction fragment length polymorphism (RFLP) and randomly amplified polymorphic DNA (RAPD) markers relative to a variety of classical markers. As for the short arm, map resolution has now been improved by crossing the chromosome 6 substitution line WSL6 to additional tester lines, carrying markers on the short arm. Molecular linkage analysis of the F2 populations enabled us to produce an integrated linkage map showing the position of molecular markers relative to the classical markers Aps-1, yv, Mi, Cf-2/Cf-5, tl and pds. In order to incorporate the centromere into the integrated map, a radiation-induced deletion mapping strategy was applied, using irradiated pollen from L. pennellii LA716 in crosses to a L. esculentum line recessive for the markers yv and tl, that flank the centromere. Molecular analysis of the hemizygous yv-deletion and tl-deletion plants identified among the F1 progeny, provided an estimate of the size of the respective deletions and, thus, of the position of the centromere relative to the molecular markers linked to yv and tl. This radiation mapping approach also provided evidence showing that, unlike published data, the root knot nematode resistance gene Mi as well as the Cladosporium fulvum resistance genes Cf-2/Cf-5 are located on the short arm.

Key words

Tomato genetic linkage maps chromosome 6 centromere resistance genes radiation-induced deletion mapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarts, J.M.M.J.G., J.G.J. Hontelez, P. Fischer, R. Verkerk, A.Van Kammen & P. Zabel, 1991. Acid phosphatase 1–1 a tightly linked molecular marker for root knot nematode resistance in tomato; from protein to gene using PCR and degererate primers containing deoxyinosine. Plant Mol. Biol. 16: 647–661.Google Scholar
  2. Balint-Kurti, P.J., D.A. Jones & J.D.G. Jones, 1994. Integration of the classical and RFLP linkage maps of the short arm of tomato chromosome 1. Theor. Appl. Genet. (in press).Google Scholar
  3. Clayberg, C.D., L. Butler, E.A. Kerr, C.M. Rick & R.W. Robinson, 1966. Third list of known genes in the tomato. J. Hered. 57: 189–196.Google Scholar
  4. Gebhardt, C., E. Ritter, A. Barone, T. Debener, B. Walkemeier, U. Schachtschabel, H. Kaufman, R.D. Thompson, M.W. Bonierbale, M.W. Ganal, S.D. Tanksley & F. Salamini, 1991. RFLP maps of potato and their alignment with the homeologous tomato genome. Theor. Appl. Genet. 83: 49–57.Google Scholar
  5. Jones, D.A., M.J. Dickinson, P.J. Balint-Kurti, M.S. Dixon & J.D.G. Jones, 1993. Two complex resistance loci revealed in tomato by classical and RFLP mapping of the Cf-2, Cf-4, Cf-5 and Cf-9 genes for resistance to Cladosporium fulvum. Mol. Plant-Microbe Interact. 6: 348–357.Google Scholar
  6. Khush, G.S. & C.M. Rick, 1968. Cytogenetic analysis of the tomato genome by means of induced deficiencies. Chromosoma 23: 452–484.Google Scholar
  7. Klein Lankhorst, R.M., P. Rietveld, B. Machiels, R. Verkerk, R. Weide, C. Gebhardt, M. Koornneef & P. Zabel, 1991. RFLP markers linked to the root knot nematode resistance gene Mi in tomato. Theor. Appl. Genet. 81: 661–667.Google Scholar
  8. Koornneef, M. & P. Stam, 1992. Genetic analysis. In: Koncz, C., N.H. Chua & J. Schell (Eds.), Methods in Arabidopsis Research, pp. 83–99. World Scientific, Singapore.Google Scholar
  9. Koornneef, M., J. Bade, C. Hanhart, K. Horsman, J. Schel, W. Soppe, R. Verkerk & P. Zabel, 1993. Characterisation and mapping of a gene controlling shoot regeneration in tomato. Plant J. 31: 131–141.Google Scholar
  10. Rick, C.M., 1988. List of miscellaneous stocks. Tomato Genet. Coop. Rep. 38: 56–66.Google Scholar
  11. Slater, A., M.J. Maunders, K. Edwards, W. Schuch & D. Grierson, 1985. Isolation and characterisation of cDNA clones for tomato polygalacturonase and other ripening related proteins. Plant Mol. Biol. 5: 137–147.Google Scholar
  12. Stam, P., 1993. Construction of integrated genetic linkage maps by means of a new computer package: joinmap. Plant J. 3: 739–744.Google Scholar
  13. Stevens, M.A. & C.M. Rick, 1986. In: Atherton, J.G. & J. Rudich (Eds.), The Tomato Crop, a Scientific Basis for Improvement, pp. 35–109. Chapman and Hall, London, UK.Google Scholar
  14. Tanksley, S.D., M.W. Ganal, J.P. Prince, M.C.De Vincente, M.W. Bonierbale, P. Broun, T.M. Fulton, J.J. Giovanonni, G.B. Grandillo Martin, R. Messeguer, J.C. Miller, L. Miller, A.H. Paterson, O. Pineda, M.S. Roder, R.A. Wing, W. Wu & N.D. Young, 1992. High density molecular linkage maps of the tomato and potato genomes. Genetics 132: 1141–1160.Google Scholar
  15. Weide, R., M.F.Van Wordragen, R. Klein-Lankhorst, R. Verkerk, C. Hanhart, Ts. Liharska, E. Pap, P. Stam, P. Zabel & M. Koornneef, 1993. Integration of classical and molecular linkage maps of tomato chromosome 6. Genetics 135: 1175–1186.Google Scholar
  16. Williamson, V.M., J.Y. Ho, F.F. Wu, N. Miller & I. Kaloshian, 1994. A PCR based marker tightly linked to the nematode resistance gene, Mi, in tomato. Theor. Appl. Genet. 87: 757–763.Google Scholar
  17. Zabel, P., M.Van Wordragen, R. Weide, T. Liharska, P. Stam & M. Koornneef, 1992. Integration of the classical and molecular linkage maps of tomato chromosome 6. In: Yoder, J. (Ed.), Molecular biology of tomato; Fundamental advances and crop improvement, pp. 37–49. Technomic Publishing Co. Inc., Lancaster, USA.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Monique F. Van Wordragen
    • 1
  • Rob Weide
    • 1
  • Tsvetana Liharska
    • 1
  • Annemieke Van Der Steen
    • 1
  • Maarten Koornneef
    • 2
  • Pim Zabel
    • 1
  1. 1.Department of Molecular BiologyWageningen Agricultural UniversityWageningenThe Netherlands
  2. 2.Department of GeneticsWageningen Agricultural UniversityWageningenThe Netherlands

Personalised recommendations