, Volume 76, Issue 3, pp 195–202 | Cite as

Nuclear DNA content and in vitro induced somatic polyploidization cassava (Manihot esculenta Crantz) breeding

  • F. Awoleye
  • M. van Duren
  • J. Dolezel
  • F. J. Novak


The diploid (2C) amount of DNA in cassava (Manihot esculenta Crantz) is 1.67 picograms (pg) per cell nucleus. This value corresponds to 772 mega-base pairs in the haploid genome. The size of the nuclear genome in cassava is very small in comparison with other Angiosperms. Flow cytometry techniques were used to screen ploidy levels in a large population of in vitro plantlets treated with colchicine and oryzalin (3,5-dinitro-N4,N-dipropylsulphate). Culture of axillary node cuttings for 48 hours in liquid medium supplemented with 2.5 to 5.0 mM colchicine in combination with 2% dimethyl sulfoxide (DMSO) resulted in a high frequency (23 to 42%) of non-chimeric tetraploids in the V3 generation. Although mixoploidy may persist in as many as four cycles of vegetative propagation of node cuttings, solid (non-chimeric) tetraploids can be identified by flow cytometry among in vitro plantlets and then rapidly propagated for field testing. A somatic polyploidization system is proposed for implementation in cassava breeding programmes.

Key words

flow cytometry tetraploidy mixoploidy cassava breeding in vitro colchicination oryzalin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AbrahamA., P.K.S.Paniker & P.M.Mathew, 1964. Polyploidy in relation to breeding in tuber crops. J. Indian Bot. Soc. 43: 278–283.Google Scholar
  2. BaiK.B.V., 1987. Recent advances in cassava genetics and cytogenetics. In: C.H.Hershey (Ed.) Cassava Breeding: A Multidisciplifiary Review, pp. 35–50. Proceedings of workshop held in the Philippines, 4–7 March 1985. CIAT Cali Colombia.Google Scholar
  3. BennettM.D. & J.B.Smith, 1976. Nuclear DNA amounts of Angiosperms. Phil. Trans. Royal Soc. London B274: 227–274.Google Scholar
  4. BennettM.D. & J.B.Smith, 1991. Nuclear DNA amounts in Angiosperms. Phil. Trans. Royal Soc. London B334: 309–345.Google Scholar
  5. BennettM.D., J.B.Smith & J.S.Heslop-Harrison, 1992. Nuclear DNA amounts in Angiosperms. Proc. Royal Soc. London B216: 179–199.Google Scholar
  6. ByrneD., 1984. Breeding cassava. Plant Breeding Reviews 2: 73–134.Google Scholar
  7. DolezelJ., 1989. FLOWSTAR: A microcomputer program for flow cytometric data manipulation and analysis. Biologia 44: 287–291.Google Scholar
  8. DolezelJ., 1991. Flow cytometric analysis of nuclear DNA content in higher plants. Phytochem. Analysis 2: 143–154.Google Scholar
  9. Dolezel, J. & F.J. Novak, 1993. Nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana). Genome-in press.Google Scholar
  10. DolezelJ., P.Binarova & S.Lucretti, 1989. Analysis of nuclear DNA content in plant cells by flow cytometry. Biol. Plant 31: 113–120.Google Scholar
  11. DolezelJ., S.Sgorbatti & S.Lucretti, 1992. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol. Plant 85: 625–631.Google Scholar
  12. FAO, 1991. Production Yearbook 1990, Vol. 44. FAO Statistics Series99, FAO Rome.Google Scholar
  13. GalbraithD.W., K.R.Harkins, J.M.Maddox, N.M.Ayres, D.P.Sharma & E.F.Roozabady, 1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220: 1049–1051.Google Scholar
  14. GamborgO.L., R.A.Miller & K.Ojima, 1968. Plant cell cultures. I. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50: 151–158.Google Scholar
  15. GivanA.L., B.K.Shenton & T.V.Carr, 1988. A correction required for calculation of DNA ratios in flow cytometric analysis of ploidy. Cytometry 9: 271–274.Google Scholar
  16. GranerE.A., 1941. Polyploid cassava: induced by colchicine treatment. J. Hered. 32: 281–288.Google Scholar
  17. GranerE.A., 1944. Una forma tetraploide de mandioca Vassourinha de provavel valor horticola. Rev. Agric. (Brazil) 19: 380–391.Google Scholar
  18. HahnS.K., E.R.Terry, K.Leuschner, I.O.Akobundu, C.Okoli & R.Lal, 1979. Cassava improvement in Africa. Field Crops Res. 2: 193–226.Google Scholar
  19. HahnS.K., K.V.Bai & R.Asiedu, 1990. Tetraploids triploids, and 2n pollen from diploid interspecific crosses with cassava. Theor. Appl. Genet. 79: 433–439.Google Scholar
  20. HahnS.K., K.V.Bai & R.Asiedu, 1992. Spontaneous somatic tetraploids in cassava. Japan J. Breed. 42: 303–308.Google Scholar
  21. IITA, 1989. Annual Report 1988. Ibadan Nigeria.Google Scholar
  22. JenningsD.L., 1963. Variation in pollen and ovule fertility in varieties of cassava, and the effect of interspecific crossing on fertility. Euphytica 12: 69–76.Google Scholar
  23. JosJ.S. & S.G.Nair, 1979. Pachytene pairing in relation to pollen fertility in five cultivars of cassava. Cytologia 44: 813–820.Google Scholar
  24. KawanoK., 1980. Cassava. In: Hybridization of Crop Plants, p. 225–235. Amer. Soc. Agron. Crop Sci., Madison Wisconsin.Google Scholar
  25. MagoonM.L., R.Krishnan & K.V.Bai, 1969a. Morphology of pachytene chromosomes and meiosis in Manihot esculenta Crantz. Cytologia 34: 612–626.Google Scholar
  26. MagoonM.L., J.S.Jos, K.N.Vasudevan & S.G.Nair, 1969b. Cytomorphological studies on induced polyploids of cassava. Genet. Iber. 21: 27–47.Google Scholar
  27. MorejohnL.C., T.E.Bureau, M.Bajer, A.S.Bajer & D.E.Fosket, 1987. Oryzalin, a dinitroaniline herbicide, binds to plant tubulin and inhibits microtubule polymerization in vitro. Planta 172: 252–264.Google Scholar
  28. MurashigeT. & F.Skoog, 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473–479.Google Scholar
  29. NassarN.M.A., 1978. Chromosome number and meiotic behaviour of some wild Manihot species native to Central Brazil. Brazilian J. Genet. 1: 51–57.Google Scholar
  30. NassarN.W.A., 1980. Attempts to hybridize wild Manihot species with cassava. Econ. Bot. 34: 13–15.Google Scholar
  31. RocaW.M., 1984. Cassava. In: W.R.Sharp, D.A.Evans, P.V.Ammirato & Y.Yamada (Eds) Handbook of Plant Cell Culture, Vol 2., pp. 269–301. Macmillan Inc., New York.Google Scholar
  32. SchleifR.S. & P.C.Wensink, 1981. Practical Method in Molecular Biology, Springer Verlag, Berlin, Heidelberg.Google Scholar
  33. Sree RamuluK., H.A.Verhoeven & P.Dijkhuis, 1991. Mitotic blocking, micronucleation, and chromosome doubling ba oryzalin, amiprophos-methyl, and colchicine in potato, Protoplasma 160: 65–71.Google Scholar
  34. VindelovL.L., I.J.Christensen & N.I.Nissen, 1983. Standardization of high resolution flow cytometric DNA analysis by the simultaneous use of chicken and trout red blood cells as internal reference standards. Cytometry 3: 328–331.Google Scholar
  35. Van Duren, M., J. Dolezel, R. Afza & F.J. Novak, 1994. Somatic polyploidy in diploid Musa acuminata (AA) induced by oryzalin in shoot tip culture. (In preparation.)Google Scholar
  36. UmanahE.E. & R.W.Hartmann, 1973. Chromosome numbers and karyotypes of some Manihot species. J. Amer. Soc. Hort. Sci. 98: 272–274.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • F. Awoleye
    • 1
  • M. van Duren
    • 2
  • J. Dolezel
    • 3
  • F. J. Novak
    • 2
  1. 1.Faculty of Agriculture, Crop Production DepartmentUniversity of IlorinIlorinNigeria
  2. 2.Plant Breeding Unit, Joint FAO/IAEA ProgrammeInternational Atomic Energy Agency's Laboratories at SeibersdorfViennaAustria
  3. 3.Department of Plant Biotechnology, Institute of Experimental BotanyCzech Academy of SciencesOlomoucCzech Republic

Personalised recommendations