Plant Molecular Biology

, Volume 31, Issue 2, pp 443–448 | Cite as

Isolation of cDNA clones of genes induced upon transfer of Chlamydomonas reinhardtii cells to low CO2

  • Mark D. Burow
  • Zhi-Yuan Chen
  • Tricia M. Mouton
  • James V. Moroney
Short Communication


Unicellular algae grow well under limiting CO2 conditions, aided by a carbon concentrating mechanism (CCM). In C. reinhardtii, this mechanism is inducible and is present only in cells grown under low CO2 conditions. We constructed a cDNA library from cells adapting to low CO2, and screened the library for cDNAs specific to low CO2-adapting cells. Six classes of low CO2-inducible clones were identified. One class of clone, reported here, represents a novel gene associated with adaptation of cells to air. A second class of clones corresponds to the air-inducible periplasmic carbonic anhydrase I (CAH1). These clones represent genes that respond to the level of CO2 in the environment.

Key words

carbonic anhydrase Chlamydomonas CO2 concentrating mechanism gene regulation by CO2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Badger MR, Kaplan A, Berry JA: Internal inorganic carbon pool of Chlamydomonas reinhardtii. Evidence for a carbon dioxide-concentrating mechanism. Plant Physiol 66: 407–413 (1980).Google Scholar
  2. 2.
    Chen Z-Y, Burow MD, Mason CB, Moroney JV: A low CO2 inducible gene encoding an alanine aminotransferase in Chlamydomonas reinhardtii. Plant Physiol (submitted).Google Scholar
  3. 3.
    Coleman JR, Grossman AR: Biosynthesis of carbonic anhydrase in Chlamydomonas reinhardtii during adaptation to low CO2. Proc Natl Acad Sci USA 81: 6049–6053 (1984).Google Scholar
  4. 4.
    Dorit RL, Ohara O, and Gilbert W: One-sided anchored polymerase chain reaction for amplification and sequencing of complementary DNA. Meth Enzymol 218: 36–47 (1993).Google Scholar
  5. 5.
    Frohman MA: RACE: Rapid amplification of cDNA ends. In: Innis MA et al. (eds) PCR Protocols: A Guide to Methods and Applications, pp. 28–38. Academic Press, San Diego, CA (1990).Google Scholar
  6. 6.
    Fujiwara S, Fukuzawa H, Tachiki A, Miyachi S: Structure and differential expression of two genes encoding carbonic anhydrase in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 87: 9779–9783 (1990).Google Scholar
  7. 7.
    Fukuzawa H, Fujiwara S, Yamamoto Y, Dionisio-Sese ML, Miyachi S: cDNA cloning, sequence, and expression of carbonic anhydrase in Chlamydomonas reinhardtii: regulation by environmental CO2 concentration. Proc Natl Acad Sci USA 87: 4383–4387 (1990).Google Scholar
  8. 8.
    Geragthy AM, Anderson JC, Spalding MH: A 36 kilodalton limiting-CO2 induced polypeptide of Chlamydomonas is distinct from the 37 kilodalton periplasmic carbonic anhydrase. Plant Physiol 93: 116–121 (1990).Google Scholar
  9. 9.
    Kindle KL: High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 87: 1228–1232 (1990).Google Scholar
  10. 10.
    Manuel LJ, Moroney JV: Inorganic carbon accumulation by Chlamydomonas reinhardtii: new proteins are made during adaptation to low CO2. Plant Physiol 88: 491–496 (1988).Google Scholar
  11. 11.
    Marek LF, Spalding MH: Changes in photorespiratory enzyme activity in response to limiting CO2 in Chlamydomonas reinhardtii. Plant Physiol 97: 420–425 (1991).Google Scholar
  12. 12.
    Moroney JV, Husic HD, Tolbert NE, Kitayama M, Manuel LJ, Togasaki RK: Isolation and characterization of a mutant of Chlamydomonas reinhardtii deficient in the CO2 concentrating mechanism. Plant Physiol 89: 897–903 (1989).Google Scholar
  13. 13.
    Moroney JV, Tolbert NE, Sears BB: Complementation analysis of the inorganic carbon concentrating mechanism of Chlamydomonas reinhardtii. Mol Gen Genet 204: 199–203 (1986).Google Scholar
  14. 14.
    Moroney JV, Mason CB: The role of the chloroplast in inorganic carbon acquisition by Chlamydomonas reinhardtii. Can J Bot 69: 1017–1024 (1991).Google Scholar
  15. 15.
    Ramazanov Z, Mason CB, Geraghty AM, Spalding MH, Moroney JV: The low CO2-inducible 36-kilodalton protein is localized to the chloroplast envelope of Chlamydomonas reinhardtii. Plant Physiol 101: 1195–1199 (1993).Google Scholar
  16. 16.
    Ramazanov Z, Rawat M, Henk MC, Mason CB, Matthews SW, Moroney JV: The induction of the CO2-concentrating mechanism is correlated with the formation of the starch sheath around the pyrenoid of Chlamydomonas reinhardtii. Planta 195: 210–216 (1994).Google Scholar
  17. 17.
    Sen P, Murai N: Oligolabeling DNA probes to high specific activity with sequenase. Plant Mol Biol Rep 9: 127–130 (1991).Google Scholar
  18. 18.
    Spalding MH, PortisJr AR: A model of carbon dioxide assimilation in Chlamydomonas reinhardtii. Planta 164: 308–320 (1985).Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Mark D. Burow
    • 1
  • Zhi-Yuan Chen
    • 1
  • Tricia M. Mouton
    • 1
  • James V. Moroney
    • 1
  1. 1.Department of Plant BiologyLouisiana State UniversityBaton RougeUSA

Personalised recommendations