Advertisement

Euphytica

, Volume 91, Issue 2, pp 163–172 | Cite as

Genetic diversity and taxonomic relationships within the genus Lens as revealed by allozyme polymorphism

  • Morag E. Ferguson
  • Larry D. Robertson
Article
  • 60 Downloads

Summary

A survey of allozyme polymorphism at 11 loci was carried out on 439 accessions from the genus Lens. This comprised 153 Lens culinaris subsp. orientalis, 35 L. odemensis, 117 L. ervoides, 32 L. nigricans, 2 of a differentiated cytotype of L. nigricans and 100 landrace accessions of the cultivated lentil (L. culinaris subsp. culinaris), from 10 different countries. The aim of the survey was to determine intra-specific genetic diversity and species relationships, based on phylogenetic and phenetic analyses, particularly regarding the position of L. odemensis and the differentiated cytotype of L. nigricans. Diversity was described by three statistics. The level of diversity in the cultivated taxon was lower than in any of the wild species according to two of these statistics, the percentage of polymorphic loci and mean number of alleles per locus. For the third measure (Nei's mean genetic diversity) it was only greater than L. ervoides. Genetic diversity statistics of the wild species indicated differences in the nature of between-population genetic diversity within the different taxa. Phylogenetic analysis suggests that L. odemensis and L. ervoides evolved from a common ancestor, and L. culinaris subsp. orientalis subsequently evolved from L. odemensis. Phenetic analysis, however, places L. odemensis closer to L. culinaris subsp. orientalis than to L. ervoides. Nei's mean genetic distance of L. odemensis from both L. culinaris subsp. culinaris (0.204) and L. culinaris subsp. orientalis (0.110) was greater than the distance between them (0.062). This evidence is not conclusive in determining whether L. odemensis should retain its specific status. Further crossability studies should be carried out on a range of genotypes to assess the potential for gene flow. The evidence presented shows the differentiated cytotype of L. nigricans to be quite distinct from other L. nigricans accessions, both phenetically and phylogenetically. This indicates that the differentiated cytotype of L. nigricans may constitute a new taxon. Discriminant function analysis reveals that isozymes may be useful in validating species classification.

Key words

genetic distance genetic diversity allozyme Lens phylogeny 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abo-elwafaA., K.Murai & T.Shimada, 1995. Intra- and inter-specific variations in Lens revealed by RAPD markers. Theor Appl Genet 90: 335–340.Google Scholar
  2. BarulinaH., 1930. Lentils of the USSR and other countries. Bulletin Applied Botany, Genetics and Plant Breeding, Supplement (English summary), 40: 225–238.Google Scholar
  3. BhattyR.S., 1986. Protein subunits and amino acid composition of wild lentil. Phytochemistry 25: 641–644.Google Scholar
  4. BrownA.D.H. & B.S.Weir, 1983. Measuring genetic variability in plant populations. In: S.D.Tanksley and T.J.Orton (Eds.) Isozymes in Plant Genetics and Breeding. Part A. pp. 219–239. Elsevier Science Publishers B.V., Amsterdam, The Netherlands.Google Scholar
  5. CrawfordD.J., 1990. Plant Molecular Systematics: Macromolecular Approaches. John Wiley and Sons, New York, USA.Google Scholar
  6. CuberoJ.I., 1981. Origin, Taxonomy and Domestication. In: C.Webb & G.C.Hawtin (Eds.), Lentils, pp. 15–38. Commonwealth Agricultural Bureaux, Slough, England.Google Scholar
  7. de laRosaL. & N.Jouve, 1992. Genetic variation for isozyme gene and proteins in Spanish primitive cultivars and wild subspecies of Lens. Euphytica. 59: 181–189.Google Scholar
  8. DoebleyJ., 1992. Molecular systematics and crop evolution. In: P.S.Soltis, P.S.Soltis & J.J.Doyle (Eds.), Molecular systematics of plants, pp. 202–222. Chapman and Hall, New York, USA.Google Scholar
  9. HaveyM. & F.Muehlbauer, 1989a. Variability for restriction fragment lengths and phylogenies in lentil. Theor Appl Genet 77: 839–843.Google Scholar
  10. HaveyM. & F.Muehlbauer, 1989b. Linkages between restriction fragment length, isozyme and morphological markers in lentil. Theor Appl Genet 77: 395–401.Google Scholar
  11. HawtinG.C., F.J.Muehlbauer, A.E.Slinkard & K.B.Singh, 1988. Current status of cool season food legume crop improvement: an assessment of critical needs. In: R.J.Summerfield (Ed.), pp. 67–80. World Crops: Cool Season Food Legumes. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  12. HoffmanD., D.Soltis, F.Muehlbauer & G.Ladizinsky, 1986. Isozyme polymorphism in Lens (Leguminosae). Syst Bot 11: 392–402.Google Scholar
  13. HoffmanD., F.J.Muehlbauer & G.Ladizinsky, 1988. Morphological variation in Lens (Leguminosae). Syst Bot 13: 87–96.Google Scholar
  14. HubbyJ.I. & R.C.Lewontin, 1966. A molecular approach to the study of genetic heterozygosity in natural populations. I. The number of alleles at different loci in Drosophila pseudoobscura. Genetics 54: 577–594.Google Scholar
  15. LadizinskyG., 1979a. The origin of lentil and its wild genepool. Euphytica 28: 179–187.Google Scholar
  16. LadizinskyG., 1979b. Species relationships in the genus Lens as indicated by seed protein electrophoresis. Bot Gaz 140: 449–451.Google Scholar
  17. LadizinskyG., 1986. A new Lens from the Middle East. Notes R Bot Gard Edin 43: 489–492.Google Scholar
  18. LadizinskyG., 1993. Wild lentils. Crit Rev Plant Sci 12: 169–184.Google Scholar
  19. LadizinskyG., D.Braun, D.Goshen & F.Muehlbauer, 1984. The biological species of the genus Lens. Bot Gaz 145: 253–261.Google Scholar
  20. LadizinskyG., D.Braun & F.J.Muehlbauer, 1983. Evidence for the domestication of Lens nigricans (M. Bieb.) Godron in S. Europe. Bot J of the Linn Soc 87: 169–176.Google Scholar
  21. LewontinR.C. & J.L.Hubby, 1966. A molecular approach to the study of genetic heterozygosity in natural populations II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics 54: 595–609.Google Scholar
  22. MayerM.S. & P.S.Soltis, 1994. Chloroplast DNA phylogeny of Lens (Leguminosae): origin and diversity of the cultivated lentil. Theor Appl Genet 87: 773–781.Google Scholar
  23. MuehlbauerF.J., N.F.Weeden & D.Hoffman, 1989. Inheritance and linkage relationships of several isozyme loci in lentil (Lens Miller). J Hered 80: 298–303.Google Scholar
  24. MuenchD.G., A.E.Slinkard & G.J.Scoles, 1991. Determination of genetic variation and taxonomy in lentil (Lens Miller) species by chloroplast DNA polymorphism. Euphytica 56: 213–218.Google Scholar
  25. NeiM., 1972. Genetic distance between populations. Am Nat 106: 283–292.Google Scholar
  26. NeiM., 1973. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70: 3321–3323.Google Scholar
  27. PinkasR., D.Zamir & G.Ladizinsky, 1985. Allozyme divergence and evolution in the genus Lens. Plant Syst Evol 151: 131–150.Google Scholar
  28. RohlfF.J., 1993. NTSYS-pc Numerical Taxonomy and Multivariate Analysis System. Exeter Software, New York, USA.Google Scholar
  29. SAS Institute Inc., 1988. SAS/STAT User's Guide, Release 6.03 Edition. Cary, NC:SASInstitute Inc. 1028pp.Google Scholar
  30. SaitouN. & M.Nei, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425.Google Scholar
  31. Selander, R.K., M.H. Smith, S.Y. Yang, W.E. Johnson & B. Gentry, 1971. Biochemical polymorphism and biosystematics in the genus Peromyscus I. Variation in the old field mouse (Peromyscus polionotus), pp.49–90. University of Texas Publication 7103 Austin, Texas.Google Scholar
  32. SharmaS.K., I.K.Dawson & R.Waugh, 1995. Relationships among cultivated and wild lentils revealed by RAPD analysis. Theor Appl Genet 91:647–654.Google Scholar
  33. SolhM. & W.Erskine, 1981. Genetic Resources. In: C.Webb & G.C.Hawtin (Eds.), Lentils, pp. 53–67. Commonwealth Agricultural Bureau, Slough, England.Google Scholar
  34. SoltisD.E., C.H.Hanfler, D.C.Darrow & G.J.Gaston, 1983. Starch gel electrophoresis of ferns: a compilation of grinding buffers, gel and electrode buffers and staining schedules. Am Fern J 73: 9–27.Google Scholar
  35. TadmorY., D.Zamir & G.Ladizinsky, 1987. Genetic mapping of an ancient translocation in the genus Lens. Theor Appl Genet 73: 883–892.Google Scholar
  36. TahirM., C.J.Simon & F.J.Muehlbauer, 1993. Gene map of lentil: a review. LENS Newsletter 20: 3–10.Google Scholar
  37. VaillancourtR.E. & A.E.Slinkard, 1992. Inheritance of new genetic markers in lentil (Lens Miller). Euphytica 64: 227–236.Google Scholar
  38. WeedenN.F., D.Zamir & Y.Tadmor, 1988. Applications of isozyme analysis in pulse crops. In: R.J.Summerfield (Ed.), pp. 979–989. World Crops: Cool Season Food Legumes. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  39. WilliamsJ.T., A.M.C.Sanchez & M.T.Jackson, 1974. Studies on lentils and their variation I. The taxonomy of the species. Society of Advanced Breeding Research in Asia and Oceania Journal (SABRAO) 6: 133–145.Google Scholar
  40. ZamirD. & G.Ladizinsky, 1984. Genetics of allozyme variants and linkage groups in lentil. Euphytica 33: 329–336.Google Scholar
  41. ZoharyD., 1972. The wild progenitor and the place of origin of the cultivated lentil, Lens culinaris. Econ Bot 26: 326–332.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Morag E. Ferguson
    • 1
  • Larry D. Robertson
    • 1
  1. 1.International Center for Agricultural Research in the Dry Areas (ICARDA)AleppoSyria

Personalised recommendations