Plant Molecular Biology

, Volume 29, Issue 3, pp 441–452 | Cite as

Athila, a new retroelement from Arabidopsis thaliana

  • T. Pélissier
  • S. Tutois
  • J. M. Deragon
  • S. Tourmente
  • S. Genestier
  • G. Picard
Research Article


An analysis of Arabidopsis thaliana heterochromatic regions allowed the identification of a new family of retroelements called Athila. These 10.5 kb elements, representing ca. 0.3% of the genome, present several features of retrotransposons and retroviruses. Athila elements are flanked by 1.5 kb long terminal repeats (LTR) that are themselves bounded by 5 bp perfect inverted repeats. These LTRs start and end with the retroviral consensus 5′TG...CA3′ nucleotides. A putative tRNA-binding site and a polypurine tract are found adjacent to the 5′ and 3′ LTR respectively. The central domain is composed of two long open reading frames (ORFs) of 935 and 694 amino acids. Despite several indications of recent transposition activity, the translation of these ORFs failed to reveal significant homology with proteins associated to retrotransposition. We suggest that the Athila family could result from the transduction and dispersion of a cellular gene by a retrotransposon.

Key words

repetitive DNA retroviral element heterochromatin transposon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bell CJ, Ecker JR: Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics 19: 137–144 (1994).CrossRefPubMedGoogle Scholar
  2. 2.
    Bingham PM, Zachar Z: Retrotransposons and the FB transposon from Drosophila melanogaster. In: Berg DE, Howe MM (eds) Mobile DNA, pp. 485–502. American Society for Microbiology, Washington DC (1989).Google Scholar
  3. 3.
    Bishop JM, Varmus HE: Functions and origins of retroviral transforming genes. In: Weiss R, Teich N, Varmus H, Coffin J (eds) RNA Tumor Viruses, pp. 246–356. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1985).Google Scholar
  4. 4.
    Bucheton A, Paro R, Sang HM, Pelisson A, Finnegan DJ: The molecular basis of I-R dysgenesis in Drosophila melanogaster: identification, cloning and properties of the I factor. Cell 38: 153–163 (1984).CrossRefPubMedGoogle Scholar
  5. 5.
    Bureau TE, White E, Wessler SR: Transduction of a cellular gene by a plant retroelement. Cell 77: 479–480 (1994).CrossRefPubMedGoogle Scholar
  6. 6.
    Camirand A, St-Pierre B, Marineau C, Brisson N: Occurence of a copia-like transposable element in one of the introns of the potato starch phosphorylase gene. Mol Gen Genet 224: 33–39 (1990).PubMedGoogle Scholar
  7. 7.
    Clare J, Farabaugh P: Nucleotide sequence of yeast Ty element: evidence for an unusual mechanism of gene expression. Proc Natl Acad Sci USA 82: 2829–2833 (1985).PubMedGoogle Scholar
  8. 8.
    Dessen P, Fondrat C, Valencien C, Mugnier C: BISANCE: a French service for access to biomolecular sequence databases. Cabios 6: 355–356 (1990).PubMedGoogle Scholar
  9. 9.
    Doolittle RF, Feng DF, Johnson MS, Mc Clure MA: Origins and evolutionary relationships of retroviruses. Q Rev Biol 64: 1–30 (1989).CrossRefPubMedGoogle Scholar
  10. 10.
    Doyle JJ, Doyle JL: A rapid DNA isolation procedure for small quantities of fresh tissue. Phytochem Bull 19: 11–15 (1987).Google Scholar
  11. 11.
    Evgen'ev MB, Corces VG, Lankenau DH: Ulysses transposable element of Drosophila shows high structural similarities to functional domains of retroviruses. J Mol Biol 225: 917–924 (1992).PubMedGoogle Scholar
  12. 12.
    Grandbastien MA: Retroelements in higher plants. Trends Genet 8: 103–108 (1992).PubMedGoogle Scholar
  13. 13.
    Grandbastien MA, Spielmann A, Caboche M: Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337: 376–380 (1989).PubMedGoogle Scholar
  14. 14.
    Jin YK, Bennetzen JL: Structure and coding properties of Bs1, a maize retrovirus-like transposon. Proc Natl Acad Sci USA 86: 6235–6239 (1989).PubMedGoogle Scholar
  15. 15.
    Jin YK, Bennetzen JL: Integration and nonrandom mutation of a plasma membrane proton ATPase gene fragment within the Bs1 retroelement of maize. Plant Cell 6: 1177–1186 (1994).CrossRefPubMedGoogle Scholar
  16. 16.
    Johns MA, Babcock MS, Fuerstenberg SM, Fuerstenberg SI, Freeling M, Simpson RB: An unusually compact retrotransposon in maize. Plant Mol Biol 12: 633–642 (1989).Google Scholar
  17. 17.
    Konieczny A, Voytas DF, Cummings MP, Ausubel FM: A superfamily of Arabidopsis thaliana retrotransposons. Genetics 127: 801–809 (1991).PubMedGoogle Scholar
  18. 18.
    Koornneef M, van Eden J, Hanhart CJ, Stam P, Braaksma FJ, Feenstra WJ: Linkage map of Arabidopsis thaliana. J Hered 74: 265–272 (1983).Google Scholar
  19. 19.
    Loeb DD, Padgett RW, Hardies SC, Shehee WR, Comer MB, Edgell MH, Hutchison CA: The sequence of a large L1 Md element reveals a tandemly repeated 5′ end and several features found in retrotransposons. Mol Cell Biol 6: 168–182 (1986).PubMedGoogle Scholar
  20. 20.
    Lucas H, Moore G, Flavell RB: Characterization of retrotransposon-like element in wheat. Mol Cell Biol 18: 282 (1989).Google Scholar
  21. 21.
    Manninen I, Schulman AH: BARE-1, a copia-like retroelement in barley (Hordeum vulgare L.). Plant Mol Biol 22: 829–846 (1993).CrossRefPubMedGoogle Scholar
  22. 22.
    Martinez-Zapater JM, Estelle MA, Somerville CR: A highly repeated DNA sequence in Arabidopsis thaliana. Mol Gen Genet 204: 417–423 (1986).CrossRefGoogle Scholar
  23. 23.
    Miklos GLG, Yamamoto MT, Davies J, Pirotta V: Microcloning reveals a high frequency of repetitive sequences characteristic of chromosome 4 and the β-heterochromatin of Drosophila melanogaster. Proc Natl Acad Sci USA 85: 2051–2055 (1988).PubMedGoogle Scholar
  24. 24.
    Mount SM, Rubin GM: Complete nucleotide sequence of the Drosophila transposable element copia: homology between copia and retroviral proteins. Mol Cell Biol 5: 1630–1638 (1985).PubMedGoogle Scholar
  25. 25.
    Palmgren MG: Capturing of host DNA by a plant retroelement: Bs1 encodes plasma membrane H+-ATPase domains. Plant Mol Biol 25: 137–140 (1994).CrossRefPubMedGoogle Scholar
  26. 26.
    Purugganan MD, Wessler SR: Molecular evolution of magellan, a maize Ty3/gypsy-like retrotransposon. Proc Natl Acad Sci USA 91: 11674–11678 (1994).PubMedGoogle Scholar
  27. 27.
    Rackwitz HR, Zehetner G, Frischauf AM, Lehrach H: Rapid restriction mapping of DNA cloned in lambda phage vector. Gene 30: 195–200 (1984).CrossRefPubMedGoogle Scholar
  28. 28.
    Rogers JH: The origin and evolution of retroposons. Int Rev Cytol 93: 187–279 (1985).PubMedGoogle Scholar
  29. 29.
    Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 77: 5463–5467 (1977).Google Scholar
  30. 30.
    Scheinker VSH, Lozovskaya ER, Bishop JG, Corces VG, Evgen'ev MB: A long terminal repeat-containing retrotransposon is mobilized during dysgenesis in Drosophila virilis. Proc Natl Acad Sci USA 87: 9615–9619 (1990).PubMedGoogle Scholar
  31. 31.
    Schwarz-Sommer Z, Leclercq L, Gobel E, Saedler H: Cin 4, an insert altering the structure of the A1 gene in Zea mays, exhibits properties of non viral retrotransposons. EMBO J 6: 3873–3880 (1987).Google Scholar
  32. 32.
    Shell BE, Collins JT, Elenich LA, Szurek PF, Dunnic WA: Two subfamilies of murine retrotransposon ETn sequences. Gene 86: 269–274 (1990).CrossRefPubMedGoogle Scholar
  33. 33.
    Simoens CR, Gielen J, Van Montagu M, Inze D: Characterization of highly repetitive sequences of Arabidopsis thaliana. Nucl Acids Res 16: 6753–6766 (1988).PubMedGoogle Scholar
  34. 34.
    Smyth DR, Kalitsis P, Joseph JL, Sentry JW: Plant retrotransposon from Lilium henryi is related to Ty3 of yeast and the gypsy group of Drosophila. Proc Natl Acad Sci USA 86: 5015–5019 (1989).PubMedGoogle Scholar
  35. 35.
    Temin HM: Reverse transcription in the eukaryotic genome: retroviruses, pararetroviruses, retrotransposons and retrotranscripts. Mol Biol Evol 2: 455–468 (1985).PubMedGoogle Scholar
  36. 36.
    Varmus H, Brown P: Retroviruses. In: Berg DE, Howe MM (eds) Mobile DNA, pp. 53–108. American Society for Microbiology, Washington DC (1989).Google Scholar
  37. 37.
    Vaury C, Bucheton A, Pelisson A: The β heterochromatic sequences flanking the I elements are themselves defective transposable elements. Chromosoma 98: 215–224 (1989).CrossRefPubMedGoogle Scholar
  38. 38.
    Voytas DF, Ausubel FM: A copia-like transposable element family in Arabidopsis thaliana. Nature 336: 242–244 (1988).CrossRefPubMedGoogle Scholar
  39. 39.
    White SE, Habera LF, Wessler SR: Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. Proc Natl Acad Sci USA 91: 11792–11796 (1994).PubMedGoogle Scholar
  40. 40.
    Xiong Y, Eickbush TH: Similarity of reverse transcriptase-like sequences of viruses, transposable elements, and mitochondrial introns. Mol Biol Evol 5: 675–690 (1988).PubMedGoogle Scholar
  41. 41.
    Xiong Y, Eickbush TH: Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9: 3353–3362 (1990).PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • T. Pélissier
    • 1
  • S. Tutois
    • 1
  • J. M. Deragon
    • 1
  • S. Tourmente
    • 1
  • S. Genestier
    • 1
  • G. Picard
    • 1
  1. 1.URA CNRS 1940, BiomoveUniversité Blaise PascalAubière CedexFrance

Personalised recommendations