Skip to main content
Log in

The phytoplankton of some gravel-pit lakes in Spain

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The phytoplankton communities of thirteen adjacent gravel-pit lakes in the lower Jarama river watershed (Madrid, Spain), were studied during spring mixing and summer stratification.

If different seasons, the phytoplankton responded to different environmental factors. During spring, the abundance of SRP (soluble reactive phosphorus) and existence of a certain thermal stability resulted in the development of a greater biomass in some lakes. During summer, however, excessively high temperatures adversely affected the communities of the warmer lakes. At the species level, the responses were diverse; ordination techniques enabled us to group them.

Some similarities were observed in phytoplankton composition between lakes, possibly due to local dispersion between adjacent lakes (frequented by abundant waterfowl).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, T. F. H., D. A. Sadowsky & N. Woodhead, 1984. Datatransformation as a scaling operation in ordination of plankton. Vegetatio 56: 147–160.

    Google Scholar 

  • Alvarez Cobelas, M., A. Rubio, M. Arauzo & V. Alario, 1987. Morfometria y geoquímica de una laguna de gravera. Limnética 3: 91–95.

    Google Scholar 

  • Alvarez Cobelas, M., A. Baltanás, J. L. Velasco, M. Valladolid, M. Izquierdo & E. Martín, 1993. Slow overturn in a gravel-pit lake. Verh. int. Ver. Limnol. 25: 83–87.

    Google Scholar 

  • Alvarez Cobelas, M. & M. Arauzo, 1994. Phytoplankton responses to varying time scales in a eutrophic reservoir. Arch. Hydrobiol. Ergebn. Limnol. 40: 69–80.

    Google Scholar 

  • APHA, 1980. Standard methods for the examination of water and wastewater. 15th edn. American Public Health Assoc. Washington DC, 1134 pp.

    Google Scholar 

  • Arauzo, M., M. Alvarez Cobelas & A. Rubio, 1987a. Infección por hongos Chytridiales en una población de Oocystis borgei (Oocystaceae, Chlorophyceae). Acta Bot. Malacitana 12: 35–43.

    Google Scholar 

  • Arauzo, M., M. Alvarez Cobelas & A. Rubio, 1987b. Efecto de una infección de hongos Chytridiales (Phycomycetes) sobre una población natural del alga Fotterella tetrachlorelloides Buck (Chlorophyceae, Oocystaceae).

  • Arauzo, M. & M. Alvarez Cobelas, 1994a. Respuesta de la comunidad fitoplanctónica a la estacionalidad en un embalse eutrófico. Limnética 10: 37–42.

    Google Scholar 

  • Arauzo, M. & M. Alvarez Cobelas, 1994b. Phytoplankton strategies and time scales in a eutrophic reservoir. Hydrobiologia 291: 1–9.

    Google Scholar 

  • Barone, R. & L. N. Flores, 1994. Phytoplankton dynamics in a shallow, hypertrophic reservoir. Hydrobiologia 289: 199–214.

    Google Scholar 

  • Díez, J. A., R. Román, M. C. Cartagena, A. Vallejo, A. Bustos & R. Caballero, 1993. Controlling nitrate pollution of aquifers by using different nitrogenous controlled release fertilizers in maize crop. Agricult., Ecosyst. Envir. 48: 49–56.

    Google Scholar 

  • Dixon, W. J., M. B. Brown, L. Engelman, J. W. Frane, M. A. Hill, R. I. Jennrich & J. D. Toporek, 1992. BMDP statistical software manual. Vol. 1, 2. Univ. California Press, Berkeley, 1500 pp.

    Google Scholar 

  • Dumont, H. J., I. van de Velde & S. Dumont, 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19: 75–97.

    Google Scholar 

  • Eloranta, P., 1993. Diversity and succession of the phytoplankton in a small lake over a two-year period. Hydrobiologia 249: 25–32.

    Google Scholar 

  • Harris, G. P. & A. M. Trimbee, 1986. Phytoplankton population dynamics of a small reservoir: Physical/biological coupling and the time scales of the community change. J. Plankton Res. 8: 1011–1025.

    Google Scholar 

  • Kuzyakhmetov, G. G., 1978. Dispersal of algae in atmosphere in the winter. Sov. J. Ecol. 9: 473–475.

    Google Scholar 

  • Le Cohu, R., N. Comoy, J. Guitard & J. Brabet, 1991. Périodicié du phytoplancton dans un réservoir de moyenne profondeur: le lac Pareloup (Massif Central, France), un exemple de succession cyclique. Ann. Limnol. 27: 197–214.

    Google Scholar 

  • Lund, J. W. G., 1978. Changes of the phytoplankton of an English lake, 1945–1977. Hydrobiol. 114: 6–21.

    Google Scholar 

  • Lund, J. W. G., C. Kippling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 10: 143–170.

    Google Scholar 

  • Marker, A. F. H., E. A. Nusch, H. Rai, B. Riemann, 1980. The measurement of photosynthetic pigments in freshwaters and standardization of methods: conclusions and recommendation. Arch. Hydrobiol. Ergebn. Limnol. 14: 91–106.

    Google Scholar 

  • Masters, M. J., 1971. The ecology of Chytridium deltanum and other fungus parasites on Oocystis sp. Can. J. Bot. 49: 75–87.

    Google Scholar 

  • OECD, 1982. Eutrophication of waters. Monitoring, assessment and control. OECD, Paris, 155 pp.

    Google Scholar 

  • Olrik, K. & A. Nauwerck, 1993. Stress and disturbance in the phytoplankton community of a shallow, hypertrophic lake. Hydrobiologia 249: 15–24.

    Google Scholar 

  • Pearsall, W. H., 1930. Phytoplankton of English lakes. I. The proportion in the waters of some dissolved substances of biological importance. J. Ecol. 18: 306–320.

    Google Scholar 

  • Proctor, V. W., 1966. Dispersal of desmids by waterbirds. Phycologia 5: 227–232.

    Google Scholar 

  • Reynolds, C. S., 1984. Phytoplankton periodicity: the interaction of form, function and environmental variability. Freshwat. Biol. 14: 111–142.

    Google Scholar 

  • Reynolds, C. S. & E. G. Bellinger, 1992. Patterns of abundance and dominance of the phytoplankton of Rostherne Mere, England: evidence from 18-year data set. Aquat. Sci. 54: 10–36.

    Google Scholar 

  • Rott, E. A., 1981. Some results of phytoplankton counting intercalibrations. Schweiz. Z. Hydrol. 43: 34–62.

    Google Scholar 

  • Schlichting, H. E., 1969. The importance of airborne algae and protozoa. J. Air Pollut. Control Ass. 19: 946–995.

    Google Scholar 

  • Sommer, U., 1981. The role of r- and K-selection in the succession of phytoplankton in lake Constance. Acta Oecol. 4: 327–342.

    Google Scholar 

  • Sommer, U., Z. M. Gliwicz & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106: 433–471.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkomnung der quantitativen Phytoplankton-Methodik. Mitt. int. Ver. Limnol. 9: 1–38.

    Google Scholar 

  • Van Donk, E., 1989. The role of fungal parasites in phytoplankton succession. In U. Sommer (ed.), Plankton ecology. Springer-Verlag. Berlin: 171–194.

    Google Scholar 

  • Vrba, J., V. Vyhnálek, J. Hejzlar & J. Nedoma, 1995. Comparison of phosphorus deficiency indices during a spring phytoplankton bloom in a eutrophic reservoir. Freshwat. Biol. 33: 73–81.

    Google Scholar 

  • Wetzel, R. G., 1981. Limnologia. Omega, Barcelona, 679 pp.

    Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 1991. Limnological analyses. Springer-Verlag, New York, 391 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arauzo, M., Cobelas, M.A., Vicioso, J. et al. The phytoplankton of some gravel-pit lakes in Spain. Hydrobiologia 333, 19–27 (1996). https://doi.org/10.1007/BF00020960

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00020960

Key words

Navigation