Advertisement

International Journal of Fracture

, Volume 23, Issue 4, pp 281–295 | Cite as

Comparison of the criteria for mixed mode brittle fracture based on the preinstability stress-strain field Part I: Slit and elliptical cracks under uniaxial tensile loading

  • S. K. Maiti
  • R. A. Smith
Article

Abstract

Predictions for the angle of crack extension, critical load and unstable crack paths based on the criteria of maximum tangential stress (MTS), maximum tangential strain (MTSN) and strain energy density (SED) for angled slit and elliptical cracks under uniaxial tensile loading are compared. The tangential stress associated with the MTS criterion need not be a principal stress and a new approach to this criterion is suggested. A criterion based on maximum tangential principal stress (MTPS) is proposed. Predictions by these two criteria are compared. Some difficulties associated with the application of the SED criterion are indicated. A new basis, which permits a unification of all the criteria in respect of prediction of critical load, is suggested. Some of the results have been compared with data available in the literature.

Keywords

Brittle Fracture Critical Load Crack Path Crack Extension Strain Energy Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

On compare dans les cas d'une fente oblique et de fissures elliptiques soumises à tension uniaxiale, les prédictions sur l'angle d'extension de la fissure, sur la charge critique et sur les chemins que suit la fissure instable, en se basant sur les critéres de la contrainte maximum tangentielle (CMT), de la dilatation maximale tangentielle (DMT) et de la densité d'énergie de déformation (DED).

La contrainte tangentielle associée au critère CMT ne doit pas être une contrainte principale, et l'on suggère une nouvelle approche de ce critère.

On propose un critère base sur la contrainte maximum tangentielle principale (CMTP) et on compare les prédictions que donnent ces deux critères. On indique certaines difficultés qui sont associées à l'application du critère DED et on suggère une base nouvelle permettant d'unifier tous les critères par rapport aux prédictions de charge critique.

Certains des résultats obtenus sont comparés avec les données disponibles dans la littérature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. Erdogan and G.C. Sih, Transactions ASME, Journal of Basic Engineering 85D (1963) 519–527.Google Scholar
  2. [2]
    M.E. Kipp and G.C. Sih, International Journal of Solids and Structures 11 (1975) 153–173.CrossRefGoogle Scholar
  3. [3]
    K.J. Chang, Engineering Fracture Mechanics 14 (1981) 107–124.CrossRefGoogle Scholar
  4. [4]
    K.J. Chang, Engineering Fracture Mechanics 14 (1981) 125–142.CrossRefGoogle Scholar
  5. [5]
    M.L. Williams, Transactions ASME, Journal of Applied Mechanics 24 (1957) 109–114.Google Scholar
  6. [6]
    J.G. Williams and P.D. Ewing, International Journal of Fracture Mechanics 8, 4 (1972) 441–446.Google Scholar
  7. [7]
    S.K. Maiti, “Unstable Edge Crack Extensions During Shearing of Bars,” PhD Thesis, IIT, Bombay (1979).Google Scholar
  8. [8]
    S.K. Maiti, Journal of Strain Analysis 15, 4 (1980) 183–194.Google Scholar
  9. [9]
    S.K. Maiti and K.S.R.K. Prasad, International Journal of Solids and Structures 16 (1980) 563–574.Google Scholar
  10. [10]
    R.V. Goldstein and R.L. Salganik, International Journal of Fracture 10 (1974) 507–523.Google Scholar
  11. [11]
    B. Cotterell and J.R. Rice, International Journal of Fracture 16, 2 (1980) 155–169.Google Scholar
  12. [12]
    G.C. Sih, Mechanics of Fracture (ed. G.C. Sih), Noordhoff International Publishing, Leyden, 1 (1973) XXI-XLV.Google Scholar
  13. [13]
    G.C. Sih, Engineering Fracture Mechanics 5 (1973) 365–377.CrossRefGoogle Scholar
  14. [14]
    J.L. Swedlow, ASTM STP 601 (1976) 506–521.Google Scholar
  15. [15]
    K.J. Chang, Transactions ASME, Journal of Applied Mechanics 49 (1982) 377–382.Google Scholar
  16. [16]
    S.K. Maiti and R.A. Smith, to appear in International Journal of Fracture.Google Scholar
  17. [17]
    H.-C. Wu, Journal of Engineering Mechanics, Division ASCE, 100 (1974) 1167–1181.Google Scholar
  18. [18]
    H.-C. Wu and K.J. Chang, Transactions ASME, Journal of Applied Mechanics 45, 2 (1978) 258–262.Google Scholar
  19. [19]
    K. Palaniswamy and W.G. Knauss, Mechanics Today (ed. S. Nemat-Nasser), Pergamon Press, New York, 4 (1978) 87–148.Google Scholar
  20. [20]
    V.V. Panasyuk, L.T. Berezhnitsky and S.Ye Kovchik, NASA Tech. Translation F-402 (1965).Google Scholar
  21. [21]
    H.C. Wu, R.F. Yao and M.C. Yip, Transactions ASME, Journal of Applied Mechanics 44 (1977) 455–461.Google Scholar

Copyright information

© Martinus Nijhoff Publishers 1983

Authors and Affiliations

  • S. K. Maiti
    • 1
  • R. A. Smith
    • 1
  1. 1.Cambridge University Engineering DepartmentCambridgeUK

Personalised recommendations