Plant Molecular Biology

, Volume 16, Issue 2, pp 199–207

The combination of a novel stimulatory element in the first exon of the maize Shrunken-1 gene with the following intron 1 enhances reporter gene expression up to 1000-fold

  • Christoph Maas
  • Jürgen Laufs
  • Sarah Grant
  • Christian Korfhage
  • Wolfgang Werr
Article

Abstract

Both exon 1 and intron 1 of the maize Shrunken-1 (Sh1) gene individually stimulate expression of reporter genes in transient gene expression experiments if present within the transcription unit. The Sh1 exon 1 mediates a 10-fold increase in activity when inserted at the 5′ end of the bacterial chloramphenicol transacetylase (CAT) marker gene in both monocot and dicot protoplasts. The Sh1 intron 1 enhances chimeric gene expression in rice and maize protoplasts approximately 100-fold but inhibits CAT expression in tobacco protoplasts. In combination, the stimulatory effects of Sh1 exon 1 and intron 1 are multiplicative in monocot protoplasts resulting in a final enhancement of up to 1000-fold compared to the unmodified CAT or luciferase marker genes.

Key words

enhanced gene expression exon intron maize rice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernstein P, Ross J: Poly(A), poly(A) binding protein and the regulation of mRNA stability. TIBS 14: 373–377 (1989).PubMedGoogle Scholar
  2. 2.
    Bingham PM, Chou T-B, Mims I, Zachar Z: On/off regulation of gene expression at the level of spicing. Trends Genet 4: 134–138 (1988).CrossRefPubMedGoogle Scholar
  3. 3.
    Bradford M: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254 (1976).CrossRefPubMedGoogle Scholar
  4. 4.
    Callis J, Fromm M, Walbot V: Introns increase gene expression in cultured maize cells. Genes Devel 1: 1183–1200 (1987).PubMedGoogle Scholar
  5. 5.
    DeWet JR, Wood KV, DeLuca M, Helinski DR, Subramani S: Firefly luciferase gene: Structure and expression in mammalian cells. Mol Cell Biol 7: 725–737 (1987).PubMedGoogle Scholar
  6. 6.
    Fang RX, Nagy F, Sivasubramaniam S, Chua N-H: Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants. Plant Cell 1: 141–150 (1989).CrossRefPubMedGoogle Scholar
  7. 7.
    Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TMA: The 5′-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo. Nucl Acids Res 15: 3257–3273 (1987).PubMedGoogle Scholar
  8. 8.
    Geiduschek EP, Tocchini-Valentini GP: Transcription by RNA polymerase III. Annu Rev Biochem 57: 873–914 (1988).CrossRefPubMedGoogle Scholar
  9. 9.
    Geiser M, Weck E, Döring HP, Werr W, Courage-Tebbe U, Tillmann E, Starlinger P: Genomic clones of a wildtype allele and a transposable element induced mutant allele of the sucrose synthase gene of Zea mays L. EMBO J 1: 1455–1460 (1982).Google Scholar
  10. 10.
    Goodall GJ, Filipowicz W: The AU-rich sequences present in the introns of plant nuclear pre-mRNAs are required for splicing. Cell 58: 473–483 (1989).CrossRefPubMedGoogle Scholar
  11. 11.
    Gorman CN, Moffat LF, Howard BH: Recombinant genomes which express in mammalian cells. Mol Cell Biol 2: 1044–1051 (1982).PubMedGoogle Scholar
  12. 12.
    Ingelbrecht ILW, Herman LMF, Dekeyser RA, VanMontague MC, Depicker AG: Different 3′ end regions strongly influence the level of gene expression in plant cells. Plant Cell 1: 671–680 (1989).CrossRefPubMedGoogle Scholar
  13. 13.
    Jobling SA, Gehrke L: Enhanced translation of chimeric messenger RNAs containing a plant viral untranslated leader sequence. Nature 325: 622–625 (1987).CrossRefPubMedGoogle Scholar
  14. 14.
    Keith B, Chua N-H: Monocot and dicot pre-mRNAs are processed with different efficiencies in transgenic tobacco. EMBO J 5: 2419–2425 (1986).Google Scholar
  15. 15.
    Lam E, Chua N-H: ASF-2: A factor that binds to the cauliflower mosaic virus 35S promoter and a conserved GATA motif in Cab promoters. Plant Cell 1: 1147–1156 (1989).CrossRefPubMedGoogle Scholar
  16. 16.
    Lörz H, Hartke S, Stolarz A: Progress and limitations in the genetic manipulation of cereals. In: Zakri AH (ed) Plant Breeding and Genetic Engineering, pp. 295–313. Sabrao/Malaysia (1988).Google Scholar
  17. 17.
    Maas C, Werr W: Mechanism and optimized conditions for PEG mediated DNA transfection into plant protoplasts. Plant Cell Rep 8: 148–151 (1989).Google Scholar
  18. 18.
    Maas C, Schaal S, Werr W: A feedback control element near the transcription start site of the maize sucrose synthase gene determines promoter activity. EMBO J 11: 3447–3452 (1990).Google Scholar
  19. 19.
    Maliga P, Sz.-Breznovitis A, Marton L: Streptomycin resistant plants from callus culture of haploid tobacco. Nature 244: 29–30 (1973).PubMedGoogle Scholar
  20. 20.
    McElroy D, Zhang W, Cao J, Wu R: Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2: 163–171 (1990).CrossRefPubMedGoogle Scholar
  21. 21.
    Oard JH, Paige DF, Simmonds JA, Gradziel TM: Transient gene expression in maize, rice and wheat cells using an airgun apparatus. Plant Phys 92: 334ff. (1990).Google Scholar
  22. 22.
    Odell JT, Nagy F, Chua N-H: Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313: 810–812 (1985).PubMedGoogle Scholar
  23. 23.
    Pröls M, Töpfer R, Schell J, Steinbiß H-H: Transient gene expression in tobacco protoplasts: I. Time course of CAT appearance. Plant Cell Rep 7: 221–224 (1988).Google Scholar
  24. 24.
    Singh K, Tokuhisa JG, Dennis ES, Peacock WJ: Saturation mutagenesis of the octopine synthase enhancer: Correlation of mutant phenotypes with binding of a nuclear protein. Proc Natl Acad Sci USA 86: 3733–3737 (1989).PubMedGoogle Scholar
  25. 25.
    Taylor JL, Jones DG, Sandler S, Mueller GH, Bedbrook J, Dunsmuir P: Optimizing the expression of chimeric genes in plant cells. Mol Gen Genet 210: 572–577 (1987).CrossRefGoogle Scholar
  26. 26.
    Tokuhisa JG, Singh K, Dennis ES, Peacock J: A DNA-binding protein factor recognizes two binding domains within the octopine synthase enhancer element. Plant Cell 2: 215–224 (1990).CrossRefPubMedGoogle Scholar
  27. 27.
    Vasil V, Clancy M, Ferl RJ, Vasil IK, Hannah C: Increased gene expression by the first intron of maize Shrunken-1 locus in grass species. Plant Phys 91: 1575–1579 (1990).Google Scholar
  28. 28.
    Wasylyk B: Enhancers and transcription factors in the control of gene expression. Biochim Biophys Acta 951: 17–35 (1988).PubMedGoogle Scholar
  29. 29.
    Werr W, Frommer W-B, Maas C, Starlinger P: Structure of the maize sucrose synthase gene on chromosome 9 of Zea mays L. EMBO J 5: 1373–1380 (1985).Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Christoph Maas
    • 1
  • Jürgen Laufs
    • 2
  • Sarah Grant
    • 2
  • Christian Korfhage
    • 1
  • Wolfgang Werr
    • 1
  1. 1.Institut für Genetik der Universität zu KölnKöln 30Germany
  2. 2.Max-Planck Institüt für ZüchtungsforschungKöln 30Germany

Personalised recommendations