Plant Molecular Biology

, Volume 32, Issue 5, pp 901–913 | Cite as

Single-site manipulation of tomato chromosomes in vitro and in vivo using Cre-lox site-specific recombination

  • Jeroen Stuurman
  • Marianne J. de Vroomen
  • H. John J. Nijkamp
  • Mark J. J. van Haaren
Research Article


With the aim of developing new techniques for physical and functional genome analysis, we have introduced the Cre-lox site-specific recombination system into the cultivated tomato (Lycopersicon esculentum). Local transposition of a Ds(lox) transposable element from a T-DNA(lox) on the long arm of chromosome 6 was used to position pairs of lox sites on different closely linked loci. In vitro Cre-lox recombination between chromosomal lox sites and synthetic lox oligonucleotides cleaved the 750 Mb tomato genome with 34 pb specificity to release unique 65 kb and 130 kb fragments of chromosome 6. Parallel in vitro experiments on Saccharomyces cerevisiae chromosomes show the efficiency of cleavage to be 50% per chromosomal lox site at maximum. By expressing the Cre recombinase in tomato under control of a constitutive CaMV 35S promoter, efficient and specific somatic and germinal in planta inversion of the 130 kb fragment is demonstrated. The combined use of in vitro and in vivo recombination on genetically mapped lox sites will provide new possibilities for long range restriction mapping and in vivo manipulation of selected tomato genome segments.

Key words

Ac/Ds chromosomal rearrangements Cre-lox meganucleases tomato 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abremski K, Hoess R: Bacteriophage P1 site-specific recombination: purification and properties of the Cre recombinase protein. J Biol Chem 259: 1509–1514 (1984).PubMedGoogle Scholar
  2. 2.
    Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA Struhl K: Current Protocols in Molecular Biology. Greene Publishing Associates (1990).Google Scholar
  3. 3.
    Bancroft I, Dean C: Transposition pattern of the maize element Ds in Arabidopsis thaliana. Genetics 134: 1221–1229 (1993).PubMedGoogle Scholar
  4. 4.
    Church GM, Gilbert W: Genomic sequencing. Proc Natl Acad Sci USA 81: 1991–1995 (1984).PubMedGoogle Scholar
  5. 5.
    Dale EC, Ow DW: Intra- and inter-molecular site-specific recombination in plant cells mediated by bacteriophage P1 recombinase. Gene 91: 79–85 (1990).CrossRefPubMedGoogle Scholar
  6. 6.
    DeBlock M, Botterman J, Vandeweile M, Dockx J, Thoen C, Gossele V, Thompson C, VanMontagu M, Leemans J: Engineering herbicide resistance plants by expression of a detoxifying enzyme. EMBO J 6: 2513–2518 (1987).Google Scholar
  7. 7.
    Dellaporta SL, Wood J, Hicks JB: A plant DNA minipreparation: version II. Plant Mol Biol Rep 1: 19–21 (1983).Google Scholar
  8. 8.
    Drubin DG, Mulholland I, Zhu Z, Botstein D: Homology of a yeast actin binding protein to signal transduction proteins and myosin-I. Nature 343: 288–290 (1990).PubMedGoogle Scholar
  9. 9.
    Ellison EL, Vogt VM: Interaction of the intron-encoded mobility endonuclease I-PpoIwith its target site. Mol Cell Biol 13: 7531–7539 (1993).PubMedGoogle Scholar
  10. 10.
    Eshed Y, Zamir D: A genomic library of Lycopersicon pennellii in L. esculentum: a tool for fine mapping of genes. Euphytica 79: 175–179 (1994).Google Scholar
  11. 11.
    Ferrin LJ, Camerini-Otero RD: Selective cleavage of human DNA: RecA assisted restriction endonuclease (RARE) cleavage. Science 254: 1494–1497 (1991).PubMedGoogle Scholar
  12. 12.
    Gates CA, Cox MM: FLP recombinase is an enzyme. Proc Natl Acad Sci USA 85: 4628–4632 (1988).PubMedGoogle Scholar
  13. 13.
    Gietz D, Sugino A: New yeast-Escherichia coli shuttle vectors with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74: 527–534 (1988).CrossRefPubMedGoogle Scholar
  14. 14.
    Himmelfarb HJ, Vassarotti A, Friesen JD: Molecular cloning and biosynthetic regulation of the cry 1 gene of Saccharomyces cerevisiae. Mol Gen Genet 195: 500–506 (1984).CrossRefPubMedGoogle Scholar
  15. 15.
    Hoess RH, Wierzbiecki A, Abremski K: The role of the spacer region in P1 site-specific recombination. Nucl Acids Res 14: 2287–2300 (1986).PubMedGoogle Scholar
  16. 16.
    Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ Jones JDG: Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266: 780–793 (1994).Google Scholar
  17. 17.
    Kilby NJ, Snaith MR, Murray JAH: Site-specific recombinases: tools for genome engineering. Trends Genet 9: 413–421 (1993).CrossRefPubMedGoogle Scholar
  18. 18.
    Koes R, Souer E, vanHouwelingen A, Mur L, Spelt C, Quatrocchio F, Wing J, Oppedijk B, Ahmed S, Maes T, Gerats T, Hoogeveen P, Meesters M, Kloos D, Mol JNM: Targeted gene inactivation in petunia by PCR-based selection of transposon insertions mutations. Proc Natl Acad Sci USA 92: 8149–8153 (1995).PubMedGoogle Scholar
  19. 19.
    Koob M, Burkiewicz A, Kur J, Szybalski W: RecA-AC: single site cleavage of plasmids and chromosomes at any predetermined restriction site. Nucl Acids Res 20: 5831–5836 (1992).PubMedGoogle Scholar
  20. 20.
    Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ: MAP-MAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181 (1987).PubMedGoogle Scholar
  21. 21.
    Larkin JC, Thompson JR, Woolford JL: Structure and expression of the Saccharomyces cerevisiae CRY1 gene: a highly conserved ribosomal protein gene. Mol Cell Biol 7: 1764–1775 (1987).PubMedGoogle Scholar
  22. 22.
    Marshall Stark W, Boocock MR, Sherrat DJ: Catalysis by sitespecific recombinases. Trends Genet 8: 432–439 (1992).CrossRefPubMedGoogle Scholar
  23. 23.
    McBride KE, Summervelt KR: Improved binary vectors for Agrobacterium-mediated plant transformation. Plant Mol Biol 14: 269–276 (1990).PubMedGoogle Scholar
  24. 24.
    Medberry SL, Dale EC, Qin MM, Ow DW: Intra-chromosomal rearrangements generated by site-specific recombination. Nucl Acids Res 23: 485–490 (1995).PubMedGoogle Scholar
  25. 25.
    Osborne BI, Corr CA, Prince JP, Hehl R, Tanksley SD, McCormick S, Baker B: Ac transposition from a T-DNA can generate linked and unlinked clusters of insertions in the tomato genome. Genetics 129: 833–844 (1991).PubMedGoogle Scholar
  26. 26.
    Osborne BI, Wirtz U, Baker B: A system for insertional mutagenesis and chromosomal rearrangement using the Ds transposon and Cre-lox. Plant J 7: 687–701 (1995).CrossRefPubMedGoogle Scholar
  27. 27.
    Ow DW: Recombinase-directed chromosome engineering in plants. Curr Opin Biotechnol 7: 181–186 (1996).CrossRefGoogle Scholar
  28. 28.
    Qin M, Lee E, Zankel T, Ow DW: Site-specific cleavage of chromosomes in vitro through Cre-lox recombination. Nucl Acids Res 23: 1923–1927 (1995).PubMedGoogle Scholar
  29. 29.
    Ramirez-Solis R, Liu P, Bradley A: Chromosome engineering in mice. Nature 378: 720–724 (1995).PubMedGoogle Scholar
  30. 30.
    Riley J, Butler R, Ogilvie D, Finniear R, Jenner D, Powell S, Anand R, Smith JC, Markham AF: A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clones. Nucl Acids Res 18: 2887–2890 (1990).PubMedGoogle Scholar
  31. 31.
    Rommens CMT, vanHaaren MJJ, Buchel AS, Mol JNM, vanTunen AJ, Nijkamp HJJ, Hille J: Transactivation of Ds by Ac-transposase gene fusions in tobacco. Mol Gen Genet 231: 433–441 (1992).CrossRefPubMedGoogle Scholar
  32. 32.
    Rommens CMT, van derBiezen EA, Ouwerkerk PBF, Nijkamp HJJ, Hille J: Ac-induced disruption of the double Ds structure in tomato. Mol Gen Genet 228: 453–458 (1991).CrossRefPubMedGoogle Scholar
  33. 33.
    Sauer B: Site-specific recombination: developments and applications. Curr Opin Biotechnol 5: 521–527 (1994).CrossRefPubMedGoogle Scholar
  34. 34.
    Schwartz D: Pattern of Ac transposition in maize. Genetics 121: 125–128 (1989).Google Scholar
  35. 35.
    Scofield S, Harrison KA, Nurrish SJ, Jones JDG: Promoter fusions to the ac transposase gene confer distinct patterns of Ds somatic and germinal excision in tobacco. Plant Cell 4: 573–582 (1992).CrossRefPubMedGoogle Scholar
  36. 36.
    Strobel SA, Doucette-Stamm LA, Riba L, Housman DE, Dervan PB: Site-specific cleavage of human chromosome 4 mediated by triple-helix formation. Science 254: 1639–1642 (1991).PubMedGoogle Scholar
  37. 37.
    Tanksley SD, Ganal MW, Prince JP, DeVicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo Martin GB, Messeguer JC, Miller L, Paterson AH, Pineda O, Roder MS, Wing RA, Wu W, Young ND: High density molecular linkage maps of the tomato and potato genomes. Genetics 132: 114–160 (1992).Google Scholar
  38. 38.
    Thierry A, Dujon B: Nested chromosomal fragmentation in yeast using the meganuclease I-SceI: a new method for physical mapping of eukaryotic genomes. Nucl Acids Res 20: 5625–5631 (1992).PubMedGoogle Scholar
  39. 39.
    vanHaaren MJJ, Ow DW: Prospects of applying a combination of DNA transposition and site-specific recombination in plants: a strategy for gene identification and cloning. Plant Mol. Biol 23: 525–533 (1993).PubMedGoogle Scholar
  40. 40.
    Weide R, vanWordragen MF, Klein Lankhorst R, Verkerk R, Hanhart C, Liharska T, Pap E, Stam P, Zabel P, Koornneef M: Integration of the classical and molecular linkage maps of tomato chromosome 6. Genetics 135: 1175–1186 (1993).PubMedGoogle Scholar
  41. 41.
    Yoder JI, Palys J, Alpert K, Lassner M: Ac transposition in transgenic tomato plants. Mol Gen Genet 213: 291–296 (1988).Google Scholar
  42. 42.
    Zhang H-B, Zhao X, Ding X, Paterson AH, Wing RA: Preparation of megabase-size DNA from plant nuclei. Plant J 7: 175–184 (1995).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Jeroen Stuurman
    • 1
  • Marianne J. de Vroomen
    • 1
  • H. John J. Nijkamp
    • 1
  • Mark J. J. van Haaren
    • 1
  1. 1.Institute for Molecular Biological Sciences, Department of GeneticsFree University AmsterdamAmsterdamNetherlands

Personalised recommendations