Plant Molecular Biology

, Volume 28, Issue 3, pp 405–421 | Cite as

The nodule-specific VfENOD-GRP3 gene encoding a glycine-rich early nodulin is located on chromosome I of Vicia faba L. and is predominantly expressed in the interzone II-III of root nodules

  • Helge Küster
  • Gerald Schröder
  • Martin Frühling
  • Uta Pich
  • Mechthild Rieping
  • Ingo Schubert
  • Andreas M. Perlick
  • Alfred Pühler
Research Article


A nodule-specific cDNA was isolated from a Vicia faba L. nodule cDNA library. Since time course experiments revealed an early expression of this transcript in the nodule, this cDNA coded for an early nodulin and was designated VfENOD-GRP3. Based on tissue print hybridizations, we found a predominant expression of VfENOD-GRP3 transcripts in the interzone II-III region of broad bean root nodules. The encoded early nodulin ENOD-GRP3 was characterized by an N-terminal signal peptide and a C-terminal domain displaying a glycine content of 31%. Sequence analysis of a genomic VfENOD-GRP3 clone revealed that the signal peptide and the glycine-rich domain were specified by two separate exons. Primer extension experiments identified two adjacent transcription start sites for VfENOD-GRP3 transcripts. The common nodulin sequences ‘AAAGAT’ and ‘CTCTT’ were present five and three times on both DNA strands of the putative VfENOD-GRP3 promoter, respectively. Additionally, three sequence motifs resembling organ-specific elements of the soybean lbc3 gene promoter and a sequence similar to the binding site 1 for the nodule trans-acting factor Nat2 were identified. From Southern blot data and from sequence analysis of genomic PCR fragments, the presence of a VfENOD-GRP3 gene family was inferred. By PCR experiments using sequence-specific primers and DNA of microisolated chromosomes as a template, this family was located on the long arm of chromosome I.

Key words

glycine-rich early nodulin interzone II-III predominant expression physical gene mapping tissue print hybridization Vicia faba L. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold W, Pühler A: A family of high-copy-number plasmid vectors with single end-label sites for rapid nucleotide sequencing. Gene 70: 171–179 (1988).Google Scholar
  2. 2.
    Bisseling T, Franssen H, Govers F, Horvath B, Moerman M, Scheres B, van de Wiel C, Yang W-C: Early nodulins in pea and soybean nodule development. In: Henneke H, Verma DPS (eds) Advances in Molecular Genetics of Plant-Microbe Interactions, vol. 1, pp. 300–303. Kluwer Academic Publishers, Dordrecht (1991).Google Scholar
  3. 3.
    Brewin NJ: Development of the legume root nodule. Annu Rev Cell Biol 7: 191–226 (1991).Google Scholar
  4. 4.
    Bullock WC, Fernandez JM, Short JM: XL1-Blue: A high efficiency plasmid transforming rec A Escherichia coli strain with beta-galactosidase selection. Bio Techniques 5: 376–379 (1987).Google Scholar
  5. 5.
    Caetano-Annollés G, Gresshoff PM: Plant genetic control of nodulation. Annu Rev Microbiol 45: 345–382 (1991).Google Scholar
  6. 6.
    Church GM, Gilbert W: Genomic sequencing. Proc Natl Acad Sci USA 81: 1991–1995 (1984).Google Scholar
  7. 7.
    Condit CM: Developmental expression and localization of petunia glycine-rich protein 1. Plant Cell 5: 277–288 (1993).Google Scholar
  8. 8.
    de Billy F, Barker DG, Callusci P, Truchet G: Leghemoglobin gene transcription is triggered in a single cell layer in the indeterminate nitrogen-fixing root nodule of alfalfa. Plant J 1: 27–35 (1991).Google Scholar
  9. 9.
    de Bruijn FJ, Schell J: Regulation of plant genes specifically induced in developing and mature nitrogen-fixing nodules: cis-acting elements and trans-acting factors. In: Verma DPS (ed) Control of Plant Gene Expression, pp. 241–258. CRC Press, Boca Raton, FL (1992).Google Scholar
  10. 10.
    de Bruijn FJ, Chen R, Fujimoto SY, Pinaev A, Silver D, Szczyglowski K: Regulation of nodulin gene expression. Plant Soil 161: 59–68 (1994).Google Scholar
  11. 11.
    Dehio C, de Bruijn FJ: The early nodulin gene SrENOD2 from Sesbania rostrata is inducible by cytokinin. Plant J 2: 117–128 (1992).Google Scholar
  12. 12.
    Delauney AJ, Verma DPS: Cloned nodulin genes for symbiontic nitrogen fixation. Plant Mol Biol Rep 6: 279–285 (1988).Google Scholar
  13. 13.
    de Vries SC, Springer J, Wessels JGH: Diversity of abundant mRNA sequences and pattern of protein synthesis in etiolated and green pea seedlings. Planta 156: 129–135 (1982).Google Scholar
  14. 14.
    Downie AJ: Signalling strategies for nodulation of legumes by rhizobia. Trends Microbiol 2: 318–324 (1994).Google Scholar
  15. 15.
    Eisenberg D, Schwarz E, Komaromy M, Wall R: Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol 179: 125–142 (1984).Google Scholar
  16. 16.
    Feinberg AP, Vogelstein B: A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6–13 (1983).Google Scholar
  17. 17.
    Franssen HJ, Yiyn I, Yang WC, Bisseling T: Developmental aspects of the Rhizobium-legume symbiosis. Plant Mol Biol 19: 89–107 (1992).Google Scholar
  18. 18.
    Frischauf AM, Lehrach H, Poustka A, Murray N: Lambda replacement vectors carrying polylinker sequences. J Mol Biol 170: 827–842 (1983).Google Scholar
  19. 19.
    Hirsch A: Developmental biology of legume nodulation. New Phytol 122: 211–237 (1992).Google Scholar
  20. 20.
    Huynh TV, Young RA, Davis RW: Construction and screening cDNA libraries in lambda gt10 and lambda gt11. In: Glover DM (ed) DNA Cloning: A Practical Approach, vol. 1, pp. 56–110. IRL Press, Oxford (1985).Google Scholar
  21. 21.
    Jerpseth B, Greener A, Short JM, Viola J, Kretz PL: XL1-Blue MRF' E. coli cells: McrA-, McrBC-, McrF-, Mrr-, HsdR- derivatives of XL1-Blue cells. Strat Mol Biol 5: 81–83 (1992).Google Scholar
  22. 22.
    Joshi CP: An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucl Acids Res 15: 6643–6653 (1987).Google Scholar
  23. 23.
    Kannenberg EL, Brewin NJ: Host-plant invasion by Rhizobium: the role of cell-surface components. Trends Microbiol 2: 277–283 (1994).Google Scholar
  24. 24.
    Kessler C: Nonradioactive labeling and detection of biomolecules. Springer-Verlag, Berlin (1992).Google Scholar
  25. 25.
    Kouchi H, Hata S: Isolation and characterization of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development. Mol Gen Genet 238: 106–119 (1993).Google Scholar
  26. 26.
    Küster H, Frühling M, Perlick AM, Pühler A: The sucrose synthase gene is predominantly expressed in the root nodule tissue of Vicia faba L.. Mol Plant-Microbe Interact 6: 507–514 (1993).Google Scholar
  27. 27.
    Küster H, Perlick AM, Pühler A: Members of a broad bean nodulin family with partial homologies to the alfalfa nodulin 25 are composed of two types of amino acids repeats flanked by unique sequence termini. Plant Mol Biol 24: 143–157 (1994).Google Scholar
  28. 28.
    Lauridsen P, Franssen H, Stougaard J, Bisseling T, Marcker KA: Conserved regulation of the soybean early nodulin ENOD2 gene promoter in determinate and indeterminate transgenic root nodules. Plant J 3: 483–492 (1993).Google Scholar
  29. 29.
    Laursen NB, Larsen K, Knudsen JY, Hoffman HJ, Poulsen C, Marcker KA, Jensen EO: A protein binding AT-rich sequence in the soybean leghemoglobin c3 promoter is a general cis element that requires proximal DNA elements to stimulate transcription. Plant Cell 6: 659–668 (1994).Google Scholar
  30. 30.
    Macas J, Weschke W, Bäumlein H, Pich U, Houben A, Wobus U, Schubert I: Localization of vicilin genes via polymerase chain reaction on microisolated field bean chromosomes. Plant J 3: 883–886 (1993).Google Scholar
  31. 31.
    Mead DA, Szczesna-Skorupa E, Kemper B: Single stranded DNA ‘blue’ T7 promoter plasmids: a versatile tandem promoter system for cloning and protein engineering. Protein Engin 1: 67–74 (1986).Google Scholar
  32. 32.
    Miao GH, Verma DP: Soybean nodulin-26 gene encoding a channel protein is expressed only in the infected cells of nodules and is regulated differently in roots of homologous and heterologous plants. Plant Cell 5: 781–794 (1993).Google Scholar
  33. 33.
    Myöhänen S, Wahlfors J: Automated fluorescent primer extension. Bio Techniques 14: 16–17 (1993).Google Scholar
  34. 34.
    Nap JP, Bisseling T: The roots of nodulins. Physiol Plant 79: 404–414 (1990).Google Scholar
  35. 35.
    Nap JP, Bisseling T: Developmental biology of a plant-prokaryote symbiosis: the legume root nodule. Science 250: 948–954 (1990).Google Scholar
  36. 36.
    Perlick AM, Pühler A: A survey of transcripts expressed specifically in root nodules of broad bean (Vicia faba L.). Plant Mol Biol 22: 957–970 (1993).Google Scholar
  37. 37.
    Pich U, Schubert I: Midiprep method for isolation of DNA from plants with a high content of polyphenolics. Nucl Acids Res 21: 3328 (1993).Google Scholar
  38. 38.
    Pridmore RD: New and versatile cloning vectors with kanamycin-resistence marker. Gene 56: 309–312 (1987).Google Scholar
  39. 39.
    Priefer U: Genes involved in lipopolysaccharide production and symbiosis are clustered on the chromosome of Rhizobium leguminosarum biovar viciae VF39. J Bact 171: 6161–6168 (1989).Google Scholar
  40. 40.
    Quandt H-J, Pühler A, Broer I: Transgenic root nodules of Vicia hirsuta: a fast and efficient system for the study of gene expression in indeterminate-type nodules. Mol Plant-Microbe Interact 6: 699–703 (1993).Google Scholar
  41. 41.
    Ramlov KB, Laursen NB, Stougaard J, Marcker KA: Site-directed mutagenesis of the organ-specific element in the soybean leghemoglobin lbc3 gene promoter. Plant J 4: 577–580 (1993).Google Scholar
  42. 42.
    Rogers J, Goedert M, Wilson PW: An extra sequence in the lambda EMBL3 polylinker. Nucl Acids Res 16: 1633 (1988).Google Scholar
  43. 43.
    Ryser U, Keller B: Ultrastructural localization of a bean glycine-rich protein in unlignified primary walls of protoxyleme cells. Plant Cell 4: 773–783 (1992).Google Scholar
  44. 44.
    Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989).Google Scholar
  45. 45.
    Sanchez F, Padilla JE, Perez H, Lara M: Control of nodulin genes in root-nodule development and metabolism. Annu Rev Plant Physiol 42: 507–528 (1991).Google Scholar
  46. 46.
    Sandal NN, Bojsen K, Marcker KA: A small family of nodule specific genes from soybean. Nucl Acids Res 15: 1507–1519 (1987).Google Scholar
  47. 47.
    Scheres B, van Engelen F, van der Knaap E, van de Wiel C, van Kammen A, Bisseling T: Sequential induction of nodulin gene expression in the developing pea nodule. Plant Cell 2: 687–700 (1990).Google Scholar
  48. 48.
    Schubert I, Dolezel J, Houben A, Scherthan H, Wanner G: Refined examination of plant metaphase chromosome structure at different levels made feasible by new isolation methods. Chromosoma 102: 96–101 (1993).Google Scholar
  49. 49.
    Shapiro MB, Senapathy P: RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucl Acids Res 15: 7155–7174 (1987).Google Scholar
  50. 50.
    Showalter AM: Structure and function of plant cell wall proteins. Plant Cell 5: 9–23 (1993).Google Scholar
  51. 51.
    Staden R: The current status and portability of our sequence handling software. Nucl Acids Res 14: 217–231 (1986).Google Scholar
  52. 52.
    Stougaard J, Sandal NN, Groen A, Kühle A, Marcker KA: 5′ analysis of the soybean leghemoglobin lbc 3 gene: regulatory elements required for promoter activity and organ specificity. EMBO J 6: 3565–3569 (1987).Google Scholar
  53. 53.
    Szczyglowski K, Szabados L, Fujimoto SY, Silver D, de Bruijn FJ: Site-specific mutagenesis of the nodule-infected cell expression (NICE) element and the AT-rich element ATRE-BS2* of the Sesbania rostrata leghemoglobin glb 3 promoter. Plant Cell 6: 317–332 (1994).Google Scholar
  54. 54.
    van Kammen A: Suggested nomenclature for plant genes involved in nodulation and symbiosis. Plant Mol Biol Rep 2: 43–45 (1984).Google Scholar
  55. 55.
    Vasse J, de Billy F, Camut S, Truchet G: Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bact 172: 4295–4306 (1990).Google Scholar
  56. 56.
    Verma DPS: Plant genes involved in carbon and nitrogen assimilation in root nodules. In: Poulton JE, Romeo JT, Conn EE (eds) Plant Nitrogen Metabolism, pp. 43–63. Plenum Press, New York (1988).Google Scholar
  57. 57.
    Verma DPS, Hu C-A, Zhang M: Root nodule development: origin, function and regulation of nodulin genes. Physiol Plant 85: 253–265 (1992).Google Scholar
  58. 58.
    von Heijne G: A new method for predicting signal sequence cleavage sites. Nucl Acids Res 14: 4683–4690 (1986).Google Scholar
  59. 59.
    Ye Z-H, Song Y-R, Varner YE: Gene expression in plants. In: Reid PD, Pout-Lezica RP, del Campillo E, Taylor R (eds) Tissue Printing: Tools for the Study Anatomy, Histochemistry, and Gene Expression, pp. 95–123. Academic Press, San Diego (1992).Google Scholar
  60. 60.
    Young RA, Davis RW: Efficient isolation of genes by using antibody probes. Proc Natl Acad Sci USA 80: 1194–1198 (1983).Google Scholar
  61. 61.
    Zimmermann J, Voss H, Schwager C, Stegemann J, Erfle H, Stucky K, Kristensen T, Ansorge W: A simplified protocol for fast plasmid DNA sequencing. Nucl Acids Res 18: 1067 (1990).Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Helge Küster
    • 1
  • Gerald Schröder
    • 1
  • Martin Frühling
    • 1
  • Uta Pich
    • 2
  • Mechthild Rieping
    • 1
  • Ingo Schubert
    • 2
  • Andreas M. Perlick
    • 1
  • Alfred Pühler
    • 1
  1. 1.Lehrstuhl für GenetikUniversität BielefeldBielefeldGermany
  2. 2.Abteilung ZytogenetikInstitut für Pflanzengenetik und KulturpflanzenforschungGaterslebenGermany

Personalised recommendations