Plant Molecular Biology

, Volume 28, Issue 2, pp 281–292 | Cite as

Somatic intrachromosomal homologous recombination events in populations of plant siblings

  • Holger Puchta
  • Peter Swoboda
  • Susannah Gal
  • Michel Blot
  • Barbara Hohn
Research Article

Abstract

Intrachromosomal homologous recombination in whole tobacco plants was analyzed using β-glucuronidase as non-selectable marker. We found that recombination frequencies were additive for transgenes in allelic positions and could be enhanced by treatment of plants with DNA-damaging agents. We compared the patterns of distribution of recombination events of different transgenic lines of tobacco and Arabidopsis with the respective Poisson distributions. Some lines showed Poisson-like distributions, indicating that recombination at the transgene locus was occurring in a random fashion in the plant population. In other cases, however, the distributions deviated significantly from Poisson distributions indicating that for specific transgene loci and/or configurations recombination events are not randomly distributed in the population. This was due to overrepresentation of plants with especially many as well as especially few recombination events. Analysis of one tobacco line indicated furthermore that the distribution of recombination events could be influenced by treating the seedlings with external factors. Our results suggest that different plant individuals, or parts of them, might exhibit different transient ‘states’ of recombination competence. A possible model relating ‘recombination silencing’ and transcription silencing to heterochromatization of the transgene locus is discussed.

Key words

Arabidopsis thaliana gene silencing MMS treatment Nicotiana tabacum Poisson distribution UV irradiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allshire RC, Javerzat J-P, Redhead NJ, Cranston G: Position effect variegation at fission yeast centromers. Cell 76: 157–169 (1994).CrossRefPubMedGoogle Scholar
  2. 2.
    Assaad FA, Signer ER: Somatic and germinal recombination of a direct repeat in Arabidopsis. Genetics 132: 553–566 (1992).PubMedGoogle Scholar
  3. 3.
    Assaad FA, Tucker KL, Signer ER: Epigenetic repeat-induced gene silencing (RIGS) in Arabidopsis. Plant Mol Biol 22: 1067–1085 (1993).PubMedGoogle Scholar
  4. 4.
    Bennett MD, Smith JB: Nuclear DNA amounts in angiosperms. Phil Trans R Soc Lond B274: 227–274 (1976).Google Scholar
  5. 5.
    Bevan M: Binary Agrobacterium vectors for plant transformation. Nucl Acids Res 12: 8711–8721 (1984).PubMedGoogle Scholar
  6. 6.
    Brooks Low K: Genetic recombination: a brief overview. In: Brooks Low K (ed) The Recombination of Genetic Material, pp. 1–18. Academic Press, San Diego (1988).Google Scholar
  7. 7.
    Charlesworth B, Sniegowski P, Stephan W: The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371: 215–220 (1994).CrossRefPubMedGoogle Scholar
  8. 8.
    Cochran WG: Some methods for strengthening the common chi-square tests. Biometrics 10: 417–451 (1954).Google Scholar
  9. 9.
    Das OP, Levi-Minzi S, Koury M, Benner M, Messing J: A somatic gene rearrangement contribution to genetic diversity in maize. Proc Natl Acad Sci USA 87: 7809–7813 (1990).PubMedGoogle Scholar
  10. 10.
    deCarvalho F, Geysen G, Kushnir S, VanMontagu M, Inze D, Castresana C: Suppression of β-1,3-glucanase transgene expression in homozygous plants. EMBO J 11: 2595–2602 (1992).PubMedGoogle Scholar
  11. 11.
    Dorer DR, Henikoff S: Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77: 993–1002 (1994).CrossRefPubMedGoogle Scholar
  12. 12.
    Flavell RB: Repeated sequences and genome change. In: Hohn B, Dennis E (eds) Plant Gene Research, vol. 2. Genetic Flux in Plants, pp. 139–156. Springer-Verlag, Wien/New York (1985).Google Scholar
  13. 13.
    Gal S, Pisan B, Hohn T, Grimsley N, Hohn B: Genomic homologous recombination in planta. EMBO J 10: 1571–1578 (1991).PubMedGoogle Scholar
  14. 14.
    Gangloff S, Lieber MR, Rothstein R: Transcription, topoisomerases and recombination. Experientia 50: 261–269 (1994).PubMedGoogle Scholar
  15. 15.
    Grossenbacher-Grunder AM: Spontaneous mitotic recombination in Schizoaccharomyces pombe. Curr Genet 10: 95–101 (1985).Google Scholar
  16. 16.
    Henikoff S: Position-effect variegation after 60 years. Trends Genet 6: 422–426 (1990).CrossRefPubMedGoogle Scholar
  17. 17.
    Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT: A simple and general method for transferring genes into plants. Science 227: 1229–1231 (1985).Google Scholar
  18. 18.
    Jefferson RA: Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5: 387–405 (1987).Google Scholar
  19. 19.
    Jorgenson R: Altered gene expression in plants due to trans interactions between homologous genes. Trends Biotechnol 8: 340–344 (1990).CrossRefPubMedGoogle Scholar
  20. 20.
    Lebel EG, Masson J, Bogucki A, Paszkowski J: Stress-induced intrachromosomal recombination in plant somatic cells. Proc Natl Acad Sci USA 90: 422–426 (1993).PubMedGoogle Scholar
  21. 21.
    Lichtenstein C, Paszkowski J, Hohn B: Intrachromosomal recombination between genomic repeats. In: Paszkowski J (ed) Homologous Recombination and Gene Silencing in Plants, pp. 95–122. Kluwer Academic Publishers, Dordrecht (1994).Google Scholar
  22. 22.
    Mattanovich D, Rüker F, deCamara Machado A, Laimer M, Regner F, Steinkellner H, Himmler G, Katinger H: Efficient transformation of Agrobacterium ssp. by electroporation. Nucl Acids Res 17: 6747 (1989).PubMedGoogle Scholar
  23. 23.
    Matzke M, Matzke AJM, Mittelsten Scheid O: Inactivation of repeated genes: DNA-DNA interaction. In: Paszkowski J (ed) Homologous Recombination and Gene Silencing in Plants, pp. 271–307. Kluwer Academic Publishers, Dordrecht (1994).Google Scholar
  24. 24.
    Matzke AJM, Neuhuber F, Park Y-D, Ambros PF, Matzke MA: Homology-dependent gene silencing in transgenic plants: epistatic silencing loci contain multiple copies of methylated transgenes. Mol Gen Genet 244: 219–229 (1994).Google Scholar
  25. 25.
    Meins F, Kunz C: Silencing of chitinase expression in transgenic plants: an autoregulatory model. In: Paszkowski J (ed) Homologous Recombination and Gene Silencing in Plants, pp. 335–348. Kluwer Academic Publishers, Dordrecht (1994).Google Scholar
  26. 26.
    Meyer P, Heidmann I, Niedenhof I: Differences in DNA-methylation are associated with a paramutation phenomenon in transgenic petunia. Plant J 4: 89–100 (1993).CrossRefPubMedGoogle Scholar
  27. 27.
    Mittelsten Scheid O, Afsar K, Paszkowski J: Gene inactivation in Arabidopsis thaliana is not accompanied by an accumulation of repeat-induced point mutations. Mol Gen Genet 244: 325–330 (1994).CrossRefPubMedGoogle Scholar
  28. 28.
    Murashige T, Skoog F: A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497 (1962).Google Scholar
  29. 29.
    Neuhaus J-M, Ahl-Goy P, Hinz U, Flores S, Meins F: High-level expression of a tobacco chitinase gene in Nicotiana sylvestris. Susceptibility of transgenic plants to Cercospora nicotianae infection. Plant Mol Biol 16: 141–151 (1991).Google Scholar
  30. 30.
    Neuhuber F, Park Y-D, Matzke AJM, Matzke MA: Susceptibility of transgene loci to homology-dependent gene silencing. Mol Gen Genet 244: 230–241 (1994).CrossRefPubMedGoogle Scholar
  31. 31.
    Peterhans A, Schlüpmann H, Basse C, Paszkowski J: Intrachromosomal recombination in plants. EMBO J 9: 3437–3445 (1990).PubMedGoogle Scholar
  32. 32.
    Puchta H, Hohn B: A transient assay in plant cells reveals a positive correlation between extrachromosomal recombination rates and length of homologous overlap. Nucl Acids Res 19: 2693–2700 (1991).PubMedGoogle Scholar
  33. 33.
    Puchta H, Kocher S, Hohn B: Extrachromosomal homologous DNA recombination in plant cells is fast and is not affected by CpG methylation. Mol Cell Biol 12: 3372–3379 (1992).PubMedGoogle Scholar
  34. 34.
    Puchta H, Dujon B, Hohn B: Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucl Acids Res 21: 5034–5040 (1993).PubMedGoogle Scholar
  35. 35.
    Puchta H, Swoboda P, Hohn B: Homologous recombination in plants. Experientia 50: 277–284 (1994).Google Scholar
  36. 36.
    Puchta H, Swoboda P, Hohn B: Induction of intrachromosomal homologous recombination in whole plants. Plant J 7, 203–210 (1995).CrossRefGoogle Scholar
  37. 37.
    Ramanathan B, Smerdon MJ: Enhanced DNA repair synthesis in hyperacetylated nucleosomes. J Biol Chem 264: 11026–11034 (1989).PubMedGoogle Scholar
  38. 38.
    Säll T, Nilsson N-O, Bengtsson BO: When everyone's map is different. Curr Biol 3: 631–633 (1993).CrossRefPubMedGoogle Scholar
  39. 39.
    Schmid B: Phenotypic variation in plants. Evol Trends Plants 6: 45–60 (1992).Google Scholar
  40. 40.
    Simpson GG, Roe A, Lewontin RC: Quantitative Zoology. Harcort, Brace and World, New York (1960).Google Scholar
  41. 41.
    Smith GR: Hotspots of homologous recombination. Experientia 50: 234–241 (1994).PubMedGoogle Scholar
  42. 42.
    Sokal RR, Rohlf FJ: Biometry. Freeman, San Francisco (1973).Google Scholar
  43. 43.
    Swoboda P, Hohn B, Gal S: Somatic homologous recombination in planta: the recombination frequency is dependent on the allelic state of the recombining sequences and may be influenced by genomic position effects. Mol Gen Genet 237: 33–40 (1993).CrossRefPubMedGoogle Scholar
  44. 44.
    Swoboda P, Gal S, Hohn B, Puchta H: Intrachromosomal homologous recombination in whole plants. EMBO J 13: 484–489 (1994).PubMedGoogle Scholar
  45. 45.
    Tovar J, Lichtenstein C: Somatic and meiotic chromosomal recombination between inverted duplications in transgenic tobacco plants. Plant Cell 4: 319–332 (1992).CrossRefPubMedGoogle Scholar
  46. 46.
    Walbot R: On life strategies of plants and animals. Trends Genet 1: 165–169 (1985).CrossRefGoogle Scholar
  47. 47.
    Walter V: Grundlagen der Pflanzenkunde, Das Verhaltenerbgleicher Pflanzen; die Zufallskurve. Ulmer Verlag, Stuttgart, pp. 401–407 (1962).Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Holger Puchta
    • 1
  • Peter Swoboda
    • 1
    • 3
  • Susannah Gal
    • 1
    • 4
  • Michel Blot
    • 2
  • Barbara Hohn
    • 1
  1. 1.Friedrich Miescher-InstitutBaselSwitzerland
  2. 2.Department of Microbiology, BiozentrumUniversity of BaselBaselSwitzerland
  3. 3.Department of GeneticsUniversity of WashingtonSeattleUSA
  4. 4.Department of Biological SciencesThe State University of New York at BinghamtonBinghamtonUSA

Personalised recommendations