Plant Molecular Biology

, Volume 27, Issue 4, pp 825–828 | Cite as

Nucleotide sequence of two cDNAs encoding fucoxanthin chlorophyll a/c proteins in the diatom Odontella sinensis

  • Peter G. Kroth-Pancic
Short Communication

Abstract

Two cDNA clones encoding fucoxanthin chlorophyll a/c-binding proteins (FCP) in the diatom Odontella sinensis have been cloned and sequenced. The derived amino acid sequences of both clones are identical, comparison of the corresponding nucleic acids reveals differences only in the third codon position, suggesting a recent gene duplication. The derived proteins are similar to the chlorophyll a/b-binding proteins of higher plants. The presequences for plastid import resemble signal sequences for cotranslational import rather than transit peptides of higher plants. They are very similar to the presequences of FCP proteins in the diatom Phaeodactylum, but different from the presequences of the γ-subunit of CF0CF1 of Odontella and the peridinin chlorophyll a binding proteins (PCP) of the dinoflagellate Symbiodinium.

Key words

cDNA diatom FCP fucoxanthin chlorophyll a/c-binding protein light-harvesting complex Odontella sinensis 

Abbreviations

CAB

chlorophyll a/b-binding protein

FCP

fucoxanthin chlorophyll a/c-binding protein

fcp

the respective FCP genes

LHC

light-harvesting complex

PCP

peridinin chlorophyll a-binding protein

PAGE

polyacrylamide gel electrophoresis

SDS

sodium dodecyl sulfate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alberte R, Eriedmann AL, Gustafson DL, Rudnick MS, Lyman H: Light harvesting systems of brown algae and diatoms. Isolation and characterization of chlorophyll a/fucoxanthin pigment complexes. Biochim Biophys Acta 635: 304–316 (1981).PubMedGoogle Scholar
  2. 2.
    Berkaloff C, Caron L, Rousseau B: Subunit organization of PSI particles from brown algae and diatoms: polypeptide and pigment analysis. Photosynth Res 23: 181–193 (1990).Google Scholar
  3. 3.
    Bhaya D, Grossmann AR: Targeting protein, to diatom plastids involves transport through an endoplasmatic reticulum. Mol Gen Genet 229: 400–404 (1991).CrossRefPubMedGoogle Scholar
  4. 4.
    Bhaya D, Grossmann AR: Characterization of gene clusters encoding the fucoxanthin chlorophyll proteins of the diatom Phaeodactylum tricornutum Nucl Acids Res 21: 4458–4466 (1993).PubMedGoogle Scholar
  5. 5.
    Chan R, Keller M, Canaday J, Weil J-H, Imbault P: Eight small subunits of Euglena ribulose 1,5-bisphosphate carboxylase/oxygenase are translated from a large mRNA as a polyprotein. EMBO J 9: 333–338 (1990).PubMedGoogle Scholar
  6. 6.
    deBoer AD, Weisbeek PJ: Chloroplast protein topogenesis: import, sorting and assembly. Biochim Biophys Acta 1071: 221–253 (1992).Google Scholar
  7. 7.
    Durnford D, Green BR: Characterization of the light harvesting proteins of the chromophytic alga, Olisthodiscus luteus (Heterosigma carterae). Biochim Biophys Acta 1184: 118–123 (1994).Google Scholar
  8. 8.
    Fawley MW, Grossmann AR: Polypeptides of light harvesting complexes of the diatom Phaeodactylum tricornutum are synthesized in the cytoplasm of the cell as precursors. Plant Physiol 81: 149–155 (1986).Google Scholar
  9. 9.
    Gibbs SP: The comparative ultrastructure of the algal chloroplast. Annu Rev NY Acad Sci 175: 454–473 (1970).Google Scholar
  10. 10.
    Gibbs SP: The route of entry of cytoplasmatically synthesized proteins into chloroplasts of algae possessing chloroplast ER. Cell Sci 35: 253–266 (1979).Google Scholar
  11. 11.
    Gierasch LM: Signal sequences. Biochemistry 28: 923–931 (1989).PubMedGoogle Scholar
  12. 12.
    Green BR, Pichersky E, Kloppstech K: The chlorophyll a/b-binding light-harvesting antennas of green plants: the story of an extended gene family, Trends Biochem Sci 16: 181–186 (1991).CrossRefPubMedGoogle Scholar
  13. 13.
    Green BR, Pichersky E: Hypothesis for the evolution of three-helix Chl a/b and Chl a/c light harvesting antenna proteins from two-helix and four-helix ancestors. Photosynth Res 39: 149–162. (1994).Google Scholar
  14. 14.
    Kishore R, Muchhal US, Schwartzbach SD: The presequence of Eugena LHCPII, a cytoplasmatically synthesized chloroplast protein, contains a functional endoplasmic reticulum-targeting domain. Proc Natl Acad Sci USA 90: 11845–11849 (1993).PubMedGoogle Scholar
  15. 15.
    Norris BJ, Miller DJ: Nucleotide sequence of a cDNA clone encoding the precursor of the peridinin-chlorophylla a-binding protein from the dinoflagellate Symbiodinium sp. Plant Mol Biol 24: 673–677.Google Scholar
  16. 16.
    Pancic PG, Kowallik KV, Strotmann H: Characterization of CF1 from the diatom Odontella sinensis. Bot Acta 103: 274–280 (1990).Google Scholar
  17. 17.
    Pancic PG, Strotmann H. Structure of the nuclear encoded γ subunit of CF0C1 of the diatom Odontella sinensis including its presequence FEBS Lett 320: 61–66 (1993).CrossRefPubMedGoogle Scholar
  18. 18.
    Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989).Google Scholar
  19. 19.
    Shashidara LS, Lim SH, Shackleton JB, Robinson C, Smith AG: Protein targeting across three membranes of the Euglena chloroplast envelope. J Biol Chem 267: 12885–12891 (1992).PubMedGoogle Scholar
  20. 20.
    vonHeijne G: Signal sequences: the limits of variation. J Mol Biol 184: 99–105 (1985).PubMedGoogle Scholar
  21. 21.
    vonHeijne G: A new method for predicting signal sequence cleavage sites. Nucl Acids Res 14: 4683–4690 (1986).PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Peter G. Kroth-Pancic
    • 1
  1. 1.Institut für Biochemie der PflanzenHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany

Personalised recommendations