Plant Molecular Biology

, Volume 27, Issue 2, pp 317–325 | Cite as

Loss of chloroplast transcripts for proteins associated with photosystem II: an early event during heat-bleaching in Euglena gracilis

  • Eric J. Thomas
  • William Ortiz
Research Article


A shift in the ratio of chlorophyll (Chl) a and Chl b is an early indicator of heat bleaching in Euglena gracilis. This observation prompted us to consider whether or not changes in steady-state levels of chloroplast transcripts and in transcriptional activity could limit the synthesis of Chl a-binding proteins in bleaching plastids. We found that the mature transcripts for CP47 and CP43, the Chl a-binding apoproteins of the proximal antenna of photosystem II, decline sharply very early during bleaching. Our study also shows that transcription of psbB and psbC, the chloroplast genes encoding CP47 and CP43, remains essentially unchanged during the same interval. We conclude that posttranscriptional events, such as mRNA stability, could play a major role in initiating an irreversible loss of chloroplast function in Euglena at a moderately elevated temperature. Lack of these transcripts would eventually impair the assembly of photosystem II in thylakoids.

Key words

chloroplasts gene expression heat bleaching photosynthesis transcription 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-khatib K, Paulsen GM: Enhancement of thermal injury to photosynthesis in wheat plants and thylakoids by high light intensity. Plant Physiol 90: 1041–1048 (1989).Google Scholar
  2. 2.
    Armond PA, Björkman O, Staehelin LA: Dissociation of supramolecular complexes in chloroplast membranes. A manifestation of heat damage to the photosynthetic apparatus. Biochim Biophys Acta 601: 433–442 (1980).Google Scholar
  3. 3.
    Armond PA, Schreiber U, Björkman O: Photosynthetic acclimation to temperature in the desert shrub, Larrea divaricata. Light-harvesting efficiency and electron transport. Plant Physiol 61: 411–415 (1978).Google Scholar
  4. 4.
    Arnon DI: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24: 1–15 (1949).Google Scholar
  5. 5.
    Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K: Current Protocols in Molecular Biology. John Wiley, New York (1987).Google Scholar
  6. 6.
    Berry J, Björkman O: Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31: 491–543 (1980).Google Scholar
  7. 7.
    Brandt P, Wiessner W: Different temperature optima of the DNA-dependent RNA polymerases of Euglena gracilis, strain Z and their role for the experimental bleaching by higher temperature. Z Pflanzenphysiol 85: 53–60 (1977).Google Scholar
  8. 8.
    Bricker TM: The structure and function of CPa-1 and CPa-2 in photosystem II. Photosynth Res 24: 1–13 (1990).Google Scholar
  9. 9.
    Chomczynski P, Sachi N: Single-step method of RNA isolation by thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156–159 (1987).Google Scholar
  10. 10.
    Conkling BA, Thomas EJ, Ortiz W: Delayed but complete loss of chloroplast DNA in heat-bleaching cultures of Euglena gracilis. J Plant Physiol 142: 307–311 (1993).Google Scholar
  11. 11.
    Cushman JC, Hallick RB, Price CA: The two genes for the P700 chlorophyll a apoproteins on the Euglena gracilis chloroplast genome contain multiple introns. Curr Genet 13: 159–171 (1988).Google Scholar
  12. 12.
    Eichacker L, Paulsen H, Rüdiger W: Synthesis of chlorophyll a regulates translation of chlorophyll a apoproteins P700, CP47, CP43 and D2 in barley etioplasts. Eur J Biochem 205: 17–24 (1992).Google Scholar
  13. 13.
    Eichacker LA, Soll J, Lauterbach P, Rüdiger W, Klein RR, Mullet JE: In vitro synthesis of chlorophyll a in the dark triggers accumulation of chlorophyll a apoproteins in barley etioplasts. J Biol Chem 265: 13566–13571 (1990).Google Scholar
  14. 14.
    Falk J, Schmidt A, Krupinska K: Characterization of plastid DNA transcription in ribosome deficient plastids of heat-bleached barley leaves. J Plant Physiol 141: 176–181 (1993).Google Scholar
  15. 15.
    Feierabend J: Inhibition of chloroplast ribosome formation by heat in higher plants. In: Edelman M, Hallick RB, Chua NH (eds) Methods in Chloroplast Molecular Biology, pp, 671–680. Elsevier, Amsterdam (1982).Google Scholar
  16. 16.
    Flamant F, Heizmann P, Nigon V: Rearrangement of chloroplast ribosomal cistrons by unequal crossing-over in Euglena gracilis. Curr Genet 8: 9–13 (1984).Google Scholar
  17. 17.
    Hallick RB, Gingrich JC, Johanningmeier U, Passavant CW: Introns in Euglena and Nicotiana chloroplast protein genes. In: VanVloten-Doting L, Groot GSP, Hall TC (eds) Molecular Form and Function of the Plant Genome, pp. 211–220. Plenum, New York (1985).Google Scholar
  18. 18.
    Hallick RB, Spielmann A, Stutz E: Complete sequence of Euglena gracilis chloroplast DNA. Nucl Acids Res 21: 3537–3544 (1993).Google Scholar
  19. 19.
    Herrmann RG, Feierabend J: The present of DNA in ribosome-deficient plastids of heat-bleached bye leaves. Eur J Biochem 104: 603–609 (1980).Google Scholar
  20. 20.
    Hess WR, Prombona A, Fieder B, Subramanian AR, Börner T: Chloroplast rps15 and the rpoB/C1/C2 gene cluster are strongly transcribed in ribosome-deficient plastids: evidence for a functioning non-chloroplastencoded RNA polymerase EMBO J 12: 563–571 (1993).Google Scholar
  21. 21.
    Hollingsworth MJ, Johanningmeier U, Karabin GD, Stiegler GL, Hallick RB: Detection of multiple, unspliced precursor mRNA transcripts for the 32,000 Mr thylakoid membrane protein from Euglena gracilis chloroplasts. Nucl Acids Res 12: 2001–2017 (1984).Google Scholar
  22. 22.
    Katoh S, San Pietro A: Ascorbate-supported NADP photoreduction by heated Euglena chloroplasts. Arch Biochem Biophys 122: 144–152 (1967).Google Scholar
  23. 23.
    Keller M, Weil JH, Nair CKK: Nucleotide sequence of the psbB gene of Euglena gracilis. Plant Molec Biol 13: 723–725 (1989).Google Scholar
  24. 24.
    Klein RR, Mullet JE: Light-induced transcription of chloroplast genes. psbA transcription is differentially enhanced in illuminated barley. J Biol Chem 265: 1895–1902 (1990).Google Scholar
  25. 25.
    Kulkarni RD, Mueller UW, Goden SS: Nucleotide sequence of psbB from Synechococcus sp. strain PCC7942. Biochim Biophys Acta 1173: 329–332 (1993).Google Scholar
  26. 26.
    Kusnetsov VV, Mikulovich TP, Kukina IM, Cherepneva GN, Herrmann RG, Kulaeva ON: Changes in the level of chloroplast transcripts in pumpkin cotyledons during heat shock. FEBS Lett 321: 189–193 (1993).Google Scholar
  27. 27.
    Mamedov M, Hayashi H, Murata N: Effects of glycine-betaine and unsaturation of membrane lipids on heat stability of photosynthetic electron transport and phosphorylation reactions in Synechocystis PCC6803. Biochim Biophys Acta 1142: 1–5 (1993).Google Scholar
  28. 28.
    Manzara T, Hu JX, Hallick RB: Characterization of the trnD, trnK, psaA locus of Euglena gracilis chloroplast DNA. Plant Mol Biol 8: 327–336 (1987).Google Scholar
  29. 29.
    Ortiz W: Contributions from the plastid and the nucleo-cytoplasmic compartments to the eyents associated with heat-bleaching in Euglena gracilis. J Plant Physiol 139: 543–548 (1992).Google Scholar
  30. 30.
    Ortiz W, Kutner MS: Cycloheximide delays chlorophyll loss but not the inhibition of plastid protein synthesis during heat-bleaching in Euglena gracilis. J Plant Physiol 137: 110–115 (1990).Google Scholar
  31. 31.
    Ortiz W, Kutner MS: Factors that affect the synthesis and accumulation of a polypeptide of the light-haryesting chlorophyll-protein complex II in Euglena gracilis. J Plant Physiol 134: 75–80 (1989).Google Scholar
  32. 32.
    Ortiz W, Reardon EM, Price CA: Preparation of chloroplasts from Euglena highly active in protein synthesis. Plant Physiol 66: 291–294 (1980).Google Scholar
  33. 33.
    Ortiz W, Wilson CJ: Induced changes in chloroplast protein accumulation during heat-bleaching in Euglena gracilis. Plant Physiol 86: 554–561 (1988).Google Scholar
  34. 34.
    Pringsheim EG, Pringsheim O: Experimental elimination of chromatophores and eye-spot in Euglena gracilis. New Phytol 51: 65–76 (1952).Google Scholar
  35. 35.
    Reinbothe S, Reinbothe C, Heintzen C, Seidenbecher C, Parthier B: A methyl jasmonate-induced shift in the length of the 5′ untranslated region impairs translation of the plastid rbcL transcript in barley. EMBO J 12: 1505–1512 (1993).Google Scholar
  36. 36.
    Schantz R: Mapping of the chloroplast genes coding for the chlorophyll a-binding proteins of E. gracilis. Plant Sci 40: 43–49 (1985).Google Scholar
  37. 37.
    Schreiber U, Berry JA: Heat-induced changes of chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus. Planta 136: 233–238 (1977).Google Scholar
  38. 38.
    Southern EM: Detection of specific sequences among DNA fragments by gel electrophoresis. J Mol Biol 98: 503–517 (1975).Google Scholar
  39. 39.
    Uzzo A, Lyman H: The nature of the chloroplast genome of Euglena gracilis. In: Forti G, Avron M, Melandri A (eds) Proceedings Second International Congress on Photosynthesis Research, pp. 2585–2599. Junk, The Hague (1971).Google Scholar
  40. 40.
    Vermaas WFJ, Ikeuchi M, Inoue Y: Protein composition of the photosystem II core complex in genetically engineered mutants of the cyanobacterium Synechocystis sp. PCC6803. Photosynth Res 17: 97–113 (1988).Google Scholar
  41. 41.
    Vermaas WFJ, Williams JGK, Rutherford AW, Mathis P, Arntzen CJ: Genetically engineered mutant of the cyanobacterium Synechocystis 6803 lacks the photosystem II chlorophyll binding protein CP47. Proc Natl Acad Sci USA 83: 9474–9477 (1986).Google Scholar
  42. 42.
    Vierling E, Key JL: Ribulose-1,5-bisphosphate carboxylase synthesis during heat shock. Plant Physiol 78: 155–162 (1985).Google Scholar
  43. 43.
    Winter U, Feierabend J: Multiple coordinate controls contribute to a balanced expression of ribulose-1,5-bisphosphate carboxylase subunits in rye leaves. Eur J Biochem 187: 445–453 (1990).Google Scholar
  44. 44.
    Yepiz-Plascencia GM, Radebaugh CA, Hallick RB: The Euglena chloroplast rpoB gene. Novel gene organization and transcription of the RNA polymerase subunit operon. Nucl Acids Res 18: 1869–1878 (1990).Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Eric J. Thomas
    • 1
  • William Ortiz
    • 1
  1. 1.Department of Botany and MicrobiologyUniversity of OklahomaNormanUSA

Personalised recommendations