Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Damage work as ductile fracture criterion

  • 215 Accesses

  • 38 Citations

Abstract

This paper treats the ductile failure initiation in circumferentially-notched tension specimens and explores the local damage model that is able to represent the continuous degradation of the deforming material. With the aid of finite element calculations, the notched specimens have been simulated numerically and the whole strain-stress history for each geometry derived. This allows determination of the evolution of strain-stress fields until fracture occurs. Two damage models were evaluated: the Rice and Tracey cavity growth model and a model which combines the latter with the plastic strain work, to derive an intrinsic parameter called ‘damage work’. These models could predict the location where the crack will initiate as well as the crack initiation step which is reached for a relatively constant value of the critical damage.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    P.W. Bridgman, Studies in Large Plastic Flow and Fracture, McGraw-Hill (1952).

  2. 2.

    K. Tanaka, T. Mori and T. Nakamura, Philosophical Magazine 21 (1970) 267–279.

  3. 3.

    F.M. Beremin, in Three-dimensional Constitutive Relations and Ductile Fracture, S. Nemat-Nasser (ed.) North-Holland Publishing (1981) 185–205.

  4. 4.

    F.M. Beremin, Metallurgical Transactions 12A (1981) 723–731.

  5. 5.

    J.W. Hancock and A.C. Mackenzie, Journal of the Mechanics and Physics of Solids 24 (1976) 147–169.

  6. 6.

    F. Mudry: Etude de la rupture ductile et de la rupture par clivage d'aciers faiblement alliés, Ph.D thesis, Université de Technologie de Compiègne (1982).

  7. 7.

    G. LeRoy, J.D. Embury, G. Edward and M.F. Ashby, Acta Metallurgica 29 (1981) 1509–1522.

  8. 8.

    A. Brownrigg, W.A. Spitzig, O. Richmond, D. Teirlinck and J.D. Embury, Acta Metallurgica 31,8 (1983) 1141–1150.

  9. 9.

    W.H. Tai, Engineering Fracture Mechanics 37,4 (1990) 853–880.

  10. 10.

    Y.W. Shi, T.J. Barny and A.S. Nadkarni, Engineering Fracture Mechanics 39,1 (1991) 37–44.

  11. 11.

    J.R. Rice and D.M. Tracey, Journal of the Mechanics and Physics of Solids 17 (1969) 201–217.

  12. 12.

    Y. Huang, Journal of Applied Mechanics, Transactions of the ASME 58 (1991) 1084–1086.

  13. 13.

    B. Marini: Croissance des cavités en plasticité-Rupture sous chargements non radiaux et en mode mixte, Ph.D thesis, Ecole de Mines de Paris (1984).

  14. 14.

    A. Halim, D.-Z. Sun and W. Dahl, in Proceedings of the 7th European Conference on Fracture, Budapest (1987).

  15. 15.

    Zhang Keshi and Zheng Changquing, Engineering Fracture Mechanics 37,3 (1990) 621–629.

  16. 16.

    K.S. Zhang, C.Q. Zheng and N.S. Yang, in 6th International Conference on Mechanics (1990) 263–268.

  17. 17.

    A.L. Gurson, Journal of Engineering Materials and Technology, Transactions of the ASME 1 (1977) 2–15.

  18. 18.

    A.G. Franklin, Journal of the Iron and Steel Institute 2 (1969) 181–186.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chaouadi, R., De Meester, P. & Vandermeulen, W. Damage work as ductile fracture criterion. Int J Fract 66, 155–164 (1994). https://doi.org/10.1007/BF00020080

Download citation

Keywords

  • Crack Initiation
  • Ductile Fracture
  • Damage Model
  • Intrinsic Parameter
  • Finite Element Calculation