Plant Molecular Biology

, Volume 30, Issue 6, pp 1321–1329

Retrotransposon BARE-1 is a major, dispersed component of the barley (Hordeum vulgare L.) genome

  • Anu Suoniemi
  • Kesara Anamthawat-Jónsson
  • Tiina Arna
  • Alan H. Schulman
Short Communication


The barley BARE-1 is a transcribed, copia-like retroelement with well-conserved functional domains, an active promoter, and a copy number of at least 3 × 104. We examined its chromosomal localization by in situ hybridization. The long terminal repeat (LTR) probe displayed a uniform hybridization pattern over the whole of all chromosomes, excepting paracentromeric regions, telomeres, and nucleolar organizer (NOR) regions. The integrase probe showed a similar pattern. The 5′-untranslated leader (UTL) probe, expected to be the most rapidly evolving component, labeled chromosomes in a dispersed and non-uniform manner, concentrated in the distal regions, possibly indicating a targe site preference.

Key words

BARE-1 retrotransposon barley chromosomes genome organization Hordeum vulgare in situ hybridization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbo S, Dunford RP, Foote TN, Reader SM, Flavell RB, Moore G: Organization of retro-element and stem-loop repeat families in the genomes and nuclei of cereals. Chromosome Res 3: 5–15 (1995).PubMedGoogle Scholar
  2. 2.
    Ahn S, Anderson JA, Sorrells ME, Tanksley SD: Homeologous relationships of rice, wheat, and maize chromosomes. Mol Gen Genet 241: 483–490 (1993).PubMedGoogle Scholar
  3. 3.
    Ahn S, Tanksley SD: Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci USA 90: 7980–7984 (1993).PubMedGoogle Scholar
  4. 4.
    Anamthawat-Jónsson K, Reader SM: Pre-annealing of total genomic DNA probes for simultaneous in situ hybridization in cereal species. Genome 38: 814–816 (1995).PubMedGoogle Scholar
  5. 5.
    Boeke JD, Corces VG: Transcription and reverse transcription of retrotransposons. Annu Rev Microbiol 43: 403–434 (1989).CrossRefPubMedGoogle Scholar
  6. 6.
    Bureau TE, Wessler SR: Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell 4: 1283–1294 (1992).CrossRefPubMedGoogle Scholar
  7. 7.
    Bureau TE, Wessler SR: Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses. Proc Natl Acad Sci USA 91: 1411–1415 (1994).PubMedGoogle Scholar
  8. 8.
    Bureau TE, Wessler SR: Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Plant Cell 6: 907–916 (1994).CrossRefPubMedGoogle Scholar
  9. 9.
    Chalker DL, Sandmeyer SB: Transfer RNA genes are genomic targets for de novo transposition of the yeast retrotransposon Ty3. Genetics 126: 837–850 (1990).PubMedGoogle Scholar
  10. 10.
    Doolittle RF, Feng D-F, Johnson MS, McClure MA: Origins and evolutionary relationships of retroviruses. Q Rev Biol 64: 1–30 (1989).CrossRefPubMedGoogle Scholar
  11. 11.
    Finnegan DJ: Eukaryotic transposable elements and genome evolution. Trends Genet 5: 103–107 (1989).CrossRefPubMedGoogle Scholar
  12. 12.
    Flavell AJ, Smith DR, Kumar A: Extreme heterogeneity of Ty1-copia group retrotransposons in plants. Mol Gen Genet 231: 233–242 (1992).PubMedGoogle Scholar
  13. 13.
    Flavell RB, O'Dell M, Hutchinson J: Nucleotide sequence organization in plant chromosomes and evidence for sequence translocation during evolution. Cold Spring Harbor Symp Quant Biol 45: 501–508 (1981).PubMedGoogle Scholar
  14. 14.
    Grandbastien M-A: Retroelements in higher plants. Trends Genet 8: 103–108 (1992).PubMedGoogle Scholar
  15. 15.
    Grandbastien M-A, Spielmann A, Caboche M: Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337: 376–380 (1989).PubMedGoogle Scholar
  16. 16.
    Hajihosseini M, Iavachev L, Price J: Evidence that retroviruses integrate into post-replication host DNA. EMBO J 12: 4969–4974 (1993).PubMedGoogle Scholar
  17. 17.
    Hirochika H, Fukuchi A, Kikuchi F: Retrotransposon families in rice. Mol Gen Genet 233: 209–216 (1992).PubMedGoogle Scholar
  18. 18.
    Ji H, Moore DP, Blomberg MA, Braiterman LT, Voytas DF, Natsoulis G, Boeke JD: Hotspots for unselected Ty1 transposition events on yeast chromosome III are near tRNA genes and LTR sequences. Cell 73: 1007–1018 (1993).CrossRefPubMedGoogle Scholar
  19. 19.
    Johns MA, Babcock MS, Fuerstenberg SM, Fuerstenberg SI, Freeling M, Simpson RB: An unusually compact retrotransposon in maize. Plant Mol Biol 12: 633–642 (1989).Google Scholar
  20. 20.
    Joshi CP, Nguyen HT: 5′ untranslated leader sequences of eukaryotic mRNAs encoding heat shock induced proteins. Nucl Acids Res 23: 541–549 (1995).PubMedGoogle Scholar
  21. 21.
    Konieczny A, Voytas DF, Cummings MP, Ausubel FM: A superfamily of Arabidopsis thaliana retrotransposons. Genetics 127: 801–809 (1991).PubMedGoogle Scholar
  22. 22.
    Kozak M: Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem 266: 19867–19870 (1991).PubMedGoogle Scholar
  23. 23.
    Lee D, Ellis THN, Turner L, Hellens RP, Cleary WG: A copia-like element in Pisum demonstrates the use of dispersed repeated sequences in genetic analysis. Plant Mol Biol 15: 707–722 (1990).CrossRefPubMedGoogle Scholar
  24. 24.
    Manninen I, Schulman AH: BARE-1, a Copia-like retroelement in barley (Hordeum vulgare L.). Plant Mol Biol 22: 829–846 (1993).CrossRefPubMedGoogle Scholar
  25. 25.
    Moore G, Cheung W, Schwarzacher T, Flavell R: BIS 1, a major component of the cereal genome and a tool for studying genomic organization. Genomics 19: 469–476 (1991).Google Scholar
  26. 26.
    Moore G, Lucas H, Batty N, Flavell R: A family of retrotransposons and associated genomic variation in wheat. Genomics 10: 461–468 (1991).PubMedGoogle Scholar
  27. 27.
    Pearce SR, Harrison G, Li D, Heslop-Harrison JS, Kumar A, Flavell AJ: The Ty1-copia group of retrotransposons in Vicia species: copy number sequence heterogeneity and chromosomal localisation. Mol Gen Genet, in press (1996).Google Scholar
  28. 28.
    Pouteau S, Huttner E, Grandbastien M-A, Caboche M: Specific expression of the tobacco Tnt1 retrotransposon in protoplasts. EMBO J 10: 1911–1918 (1991).PubMedGoogle Scholar
  29. 29.
    Pouteau S, Spielmann A, Meyer C, Grandbastien M-A, Caboche M: Effects of Tnt1 tobacco retrotransposon insertion on target gene transcription. Mol Gen Genet 228: 233–239 (1991).CrossRefPubMedGoogle Scholar
  30. 30.
    Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).Google Scholar
  31. 31.
    Sandmeyer SB, Hansen LJ, Chalker DL: Integration specificity of retrotransposons and retroviruses. Annu Rev Genet 24: 491–518 (1990).CrossRefPubMedGoogle Scholar
  32. 32.
    Schmidt D, Graner A: Genomic organization and sequence diversity of the long terminal repeat (LTR) of the BARE-1 retrotransposon family in barley. Barley Genet Newsl 24: 24–27 (1994).Google Scholar
  33. 33.
    Schwarzacher T, Leitch AR: Enzymatic treatment of plant material to spread chromosomes for in situ hybridizaton. In: Isaac PG (ed) Methods in Molecular Biology, pp. 153–160, Humana Press, Totawa, NJ (1994).Google Scholar
  34. 34.
    Smyth DR: Plant retrotransposons. In: Verma DPS (ed) Control of Plant Gene Expression, pp. 1–15. CRC Press, Boca Raton, FL (1993).Google Scholar
  35. 35.
    Smyth DR, Kalitsis P, Joseph JL, Sentry JW: Plant retrotansposons from Lilium henryi is related to Ty3 of yeast and the Gypsy group of Drosophila. Proc Natl Acad Sci USA 86: 5015–5019 (1989).PubMedGoogle Scholar
  36. 36.
    Svitashev S, Bryngelsson T, Vershinin A, Pedersen C, Säll T, von Bothmer R: Phylogenetic analysis of the genus Hordeum using repetitive DNA sequences. Theor Appl Genet 89: 801–810 (1994).CrossRefGoogle Scholar
  37. 37.
    Vander Wiel PL, Voytas DF, Wendel JF: Copia-like retrotransposable element evolution in diploid and polyploid cotton (Gossypium L.). J Mol Evol 36: 429–447 (1993).PubMedGoogle Scholar
  38. 38.
    Varagona MJ, Purugganan M, Wessler SR: Alternative splicing induced by insertion of retrotransposons into the maize waxy gene. Plant Cell 4: 811–820 (1992).CrossRefPubMedGoogle Scholar
  39. 39.
    Varmus HE: Retroviruses. In: Shapiro JA (ed) Mobile Genetic Elements, pp. 411–503. Academic Press, New York (1983).Google Scholar
  40. 40.
    Vershinin AV, Salina EA, Solovyov VV, Timofeyeva LL: Genomic organization, evolution, and structural peculiarities of highly repetitive DNA of Hordeum vulgare. Genome 33: 441–449 (1990).PubMedGoogle Scholar
  41. 41.
    Vershinin AV, Salina EA, Svitashev SK: Is there a connection between genomic changes and wide hybridization? Hereditas 116: 213–217 (1992).PubMedGoogle Scholar
  42. 42.
    Voytas DF, Cummings MP, Konieczny AK, Ausubel FM, Rodermel SR: Copia-like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci USA 89: 7124–7128 (1992).PubMedGoogle Scholar
  43. 43.
    White SE, Habera LF, Wessler SR: Retrotransposons in the flanking regions of normal plant genes: A role for copia-like elements in the evolution of gene structure and expression. Proc Natl Acad Sci USA 91: 11792–11796 (1994).PubMedGoogle Scholar
  44. 44.
    Suoniemi A, Narvanto A, Schulman AH: The BARE retrotranspon is transcribed in barley from an LTR promoter active in transient assays. Plant Mol Biol (in press).Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Anu Suoniemi
    • 1
  • Kesara Anamthawat-Jónsson
    • 2
  • Tiina Arna
    • 1
  • Alan H. Schulman
    • 1
  1. 1.Institute of BiotechnologyUniversity of Helsinki, Biocenter 1AHelsinkiFinland
  2. 2.Agricultural Research Institute (RALA)ReykjavíkIceland

Personalised recommendations