Plant Molecular Biology

, Volume 14, Issue 6, pp 1019–1030 | Cite as

Mitochondrial malate dehydrogenase from watermelon: sequence of cDNA clones and primary structure of the higher-plant precursor protein

  • Christine Gietl
  • Michael Lehnerer
  • Ole Olsen


The isolation and sequence of a cDNA clone encoding the complete mitochondrial malate dehydrogenase (mMDH) of watermelon cotyledons is presented. Taking advantage of the polymerase chain reaction technology partial cDNA clones from the central part, the 3′ part and the 5′ part of the mRNA were obtained with oligonucleotides based on directly determined amino acid sequences. Subsequently, two complete cDNA clones for mMDH were synthesized with a sense primer corresponding to the nucleotide sequence of the amino terminal end of pre-mMDH and two antisense primers corresponding to the major alternative adenylation sites found in the mRNA.

The amino acid residues for substrate and cofactor binding identified by X-ray crystallography for pig heart cytoplasmic MDH are conserved in the 320 amino acid long mature higher-plant mMDH. A presequence of 27 amino acids is present at the amino terminal end of the precursor protein.

Key words

isoenzymes cotyledons Citrullus vulgaris polymerase chain reaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Birktoft JJ, Banaszak J: The presence of a histidineaspartic acid pair in the action site of 2-hydroxyacid dehydrogenases. X-ray refinement of cytoplasmic malate dehydrogenase. J Biol Chem 258: 472–482 (1983).Google Scholar
  2. 2.
    Birktoft JJ, Bradshaw RA, Banaszak LJ: Structure of porcine heart cytoplasmic malate dehydrogenase: Combining x-ray diffraction and chemical sequence data in structural studies. Biochemistry 26: 2722–2734 (1987).Google Scholar
  3. 3.
    Birktoft JJ, Fernley RT, Bradshaw RA, Banaszak LJ: Amino acid sequence homology among the 2-hydroxy acid dehydrogenases: Mitochondrial and cytoplasmic malate dehydrogenases form a homologous system with lactage dehydrogenase. Proc Natl Acad Sci USA 79: 5166–6170 (1982).Google Scholar
  4. 4.
    Chu TW, Grant PM, Strauss A: Mutation of a neutral amino acid in the transit peptide of rat mitochondrial malate dehydrogenase abolishes binding and import. J Biol Chem 262: 15759–15764 (1987).Google Scholar
  5. 5.
    Dittrich P, Raschke K: Malate metabolism in isolated epidermis ofCommelina communis L. in relation to stomatal functioning. Planta 134: 77–81 (1977).Google Scholar
  6. 6.
    Gietl C, Hock B: Organell-bound malate dehydrogenase isoenzymes are synthesized as higher molecular weight precursors. Plant Physiol 70: 483–487 (1982).Google Scholar
  7. 7.
    Gietl C, Hock B: Glyoxysomal and mitochondrial malate dehydrogenase in watermelon cotyledons. In: Rattazzi MC, Scandalios IG, Whitt GS: Isozymes: Current Topics in Biological and Medical Research, vol. 16, pp. 175–192 Alan R. Liss, Inc., New York (1987).Google Scholar
  8. 8.
    Gietl C, Lottspeich F, Hock B: Sequence homologies between glyoxysomal and mitochondrial malate dehydrogenase. Planta 169: 555–558 (1986).Google Scholar
  9. 9.
    Grant PM, Tellam J, May VL, Strauss AW: Isolation and nucleotide sequence of a cDNA clone encoding rat mitochondrial malate dehydrogenase. Nucl Acids Res 14: 6053–6066 (1986).Google Scholar
  10. 10.
    Hartl F-V, Pfanner N, Nicholson DW, Neupert W: Mitochondrial protein import. Biochim Biophys Acta 988: 1–45 (1989).Google Scholar
  11. 11.
    Hattori M, Sakaki Y: Dideoxy sequencing method using denatured plasmid templates. Anal Biochem 152: 232–238 (1986).Google Scholar
  12. 12.
    Heijne Gvon, Steppuhn J, Herrmann RG: Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem 180: 535–545 (1989).Google Scholar
  13. 13.
    Hock B: Die Hemmung der Isocitrat-Lyase bei Wassermelonenkeimlingen durch Weisslicht. Planta 85: 340–350 (1969).Google Scholar
  14. 14.
    Joh T, Takeshima H, Tsuzuki T, Setoyama C, Shimada K, Tanase S, Kuramitsu S, Kagamiyama H, Morino Y: Cloning and sequence analysis of cDNAs encoding mammalian cytosolic malate dehydrogenase. J Biol Chem 262: 15127–15131 (1987).Google Scholar
  15. 15.
    Joh T, Takeshima H, Tsuzuki T, Shimada K, Tanase S, Morino Y: Cloning and sequence analysis of cDNA encoding mammalian mitochondrial malate dehydrogenase. Biochemistry 26: 2515–2520 (1987).Google Scholar
  16. 16.
    Kindl H: Biochemie der Pflanzen. Springer-Verlag Berlin/Heidelberg/New York (1987).Google Scholar
  17. 17.
    Loh EY, Elliott JF, Cwirla S, Lanier LL, Davis MM: Polymerase chain reaction with single sided specificity: analysis of T cell receptor Δ chain. Science 243: 217–243 (1989).Google Scholar
  18. 18.
    Maniatis T, Fritisch EF, Sambrook J: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1983).Google Scholar
  19. 19.
    McAlister-Henn L: Evolutionary relationships among the malate dehydrogenases. TIBS 13: 178–181 (1988).Google Scholar
  20. 20.
    McAlister-Henn L, Blaber M, Bradshaw RA, Nisco SJ: Complete nucleotide sequence ofEscherichia coli gene encoding malate dehydrogenase. Nucleic Acids Res 15: 4993 (1987).Google Scholar
  21. 21.
    Myers AM, Tzagoloff A:MSW, a yeast gene coding for mitochondrial tryptophanyl-tRNA synthetase. J Biol Chem 260: 15371–15377 (1985).Google Scholar
  22. 22.
    Nicholls DJ, Minton NP, Alkinson T, Sundaram TK: Cloning sequencing and over-expression ofEscherichia coli malate dehydrogenase. Appl Microbiol Biotechnol 31: 376–382 (1989).Google Scholar
  23. 23.
    Nishiyama M, Matsubara N, Yamamoto K, Iijima S, Vozumi T, Beppu T: Nucleotide sequence of the malate dehydrogenase gene ofThermus flavus and its mutation directing an increase in enzyme activity. J Biol Chem 261: 14178–14183 (1986).Google Scholar
  24. 24.
    Queen C, Korn LJ: A comprehensive sequence analysis program for the IBM personal computer. Nucleic Acids Res 12: 581–599 (1984).Google Scholar
  25. 25.
    Raschke K: Stomatal action. Ann Rev Plant Physiol 26: 309–340 (1975).Google Scholar
  26. 26.
    Rutledge RG, Seligy VL, Côté M-J, Dimack K, Lewin LL, Tenniswood MP: Rapid synthesis and cloning of complementary DNA from any RNA molecule into plasmid and phage M13 vectors. Gene 68: 1251–158 (1985).Google Scholar
  27. 27.
    Sachs MM, Dennis ES, Gerlach WL, Peacock WJ: Two alleles of maizealcohol dehydrogenase 1 have 3′ structural and poly(A) addition polyporphims. Genetics 113: 449–467 (1986).Google Scholar
  28. 28.
    Saiki RK, Gelford DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA: Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–490 (1988).Google Scholar
  29. 29.
    Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467 (1977).Google Scholar
  30. 30.
    Sautter C, Hock B: Fluorescence immunohistochemical localization of malate dehydrogenase isoenzymes in watermelon cotyledons. Plant Physiol 70: 1162–1168 (1982).Google Scholar
  31. 31.
    Schmitz UK, Lonsdale DM: A yeast mitochondrial presequence functions as a signal for targeting to plant mitochondria in vivo. Plant Cell 1: 783–791 (1989).Google Scholar
  32. 32.
    Sztu ES, Chu TW, Strauss A, Rosenberg LE: Import of the malate dehydrogenase precursor by mitochondria. J Biol Chem 263: 12085–12091 (1988).Google Scholar
  33. 33.
    Takeshima H, Joh T, Tsuzuki T, Shimada K, Matsukado Y: Structural organization of the mouse malate dehydrogenase gene. J Mol Biol 200: 1–11 (1988).Google Scholar
  34. 34.
    Thompson LM, McAlister-Henn L: Dispensable presequence for cellular localization and function of mitochondrial malate dehydrogenase fromSaccharomyces cerevisiae. J Biol Chem 264: 12091–12096 (1989).Google Scholar
  35. 35.
    Thompson LM, Sutherland P, Steffan JS, McAlister-Henn L: Gene sequence and primary structure of mitochrondrial malate dehydrogenase fromSaccharomyces cerevisiae. Biochemistry 27: 8393–8400 (1988).Google Scholar
  36. 36.
    Vieira J, Messing Y: The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19: 259–268 (1982).Google Scholar
  37. 37.
    Walk R-A, Hock B: Cell free synthesis of glyoxysomal malate dehydrogenase. Biochem Biophys Res Commun 81: 636–643 (1977).Google Scholar
  38. 38.
    Wilks HM, Hart KN, Feeney R, Dunn CR, Muirhead H, Chia WN, Barstow DA, Atkinson T, Clarke AR, Holbrook JJ: A specific, highly active malate dehydrogenase by redesign of a lactate dehydrogenase framework. Science 242: 1541–1544 (1988).Google Scholar
  39. 39.
    Zhang H, Scholl R, Browse J, Sommerville C: Double stranded sequencing as a choice for DNA sequencing. Nucleic Acids 16: 1220 (1988).Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Christine Gietl
    • 1
  • Michael Lehnerer
    • 1
  • Ole Olsen
    • 2
  1. 1.Lehrstuhl für BotanikTechnische Universität MünchenMünchen 2FRG
  2. 2.Department of PhysiologyCarlsberg LaboratoryValbyDenmark

Personalised recommendations