, Volume 123, Issue 2, pp 161–170 | Cite as

Turbidity enhances feeding abilities of larval Pacific herring, Clupea harengus pallasi

  • George W. Boehlert
  • John B. Morgan


Fishes inhabiting estuaries, rivers, and embayments are subject to turbid conditions. Larvae of many fishes utilize estuaries as nursery areas. For visual plankton feeders such as larval fishes, turbidity may reduce search and reaction distances, resulting in lowered feeding abilities. In this study feeding Pacific herring larvae, Clupea harengus pallasi, were exposed to suspensions of estuarine sediment and Mount Saint Helens volcanic ash at concentrations ranging from 0 mg · l−1 to 8 000 mg · l−1. In all experiments, maximum feeding incidence and intensity occurred at levels of suspension of either 500 mg · l−1 or 1000 mg · l−1 with values significantly greater than controls (0 mg · l−1). Feeding decreased at greater concentrations. The suspensions may enhance feeding by providing visual contrast of prey items on the small perceptive scale used by the larvae. Larval residence in turbid environments such as estuaries may serve to reduce predation from larger, visual planktivores, while searching ability in the small larval perceptive field is not decreased.


larvae feeding turbidity volcanic ash estuaries 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auld, A. H. & J. H. Schubel, 1978. Effects of suspended sediment on fish eggs and larvae: a laboratory assessment. Estuar. Coast. mar. Sci. 6: 153–164.Google Scholar
  2. Blaber, S. J. M. & T. G. Blaber, 1980. Factors affecting the distribution of juvenile estuarine and inshore fish. J. Fish Biol. 17: 143–162.Google Scholar
  3. Blaxter, J. H. S., 1968. Visual tresholds and spectral sensitivity of herring larvae. J. exp. Biol. 48: 39–53.Google Scholar
  4. Blaxter, J. H. S., 1973. Monitoring the vertical movements and light responses of herring and plaice larvae. J. mar. biol. Ass. U.K. 53: 635–647.Google Scholar
  5. Blaxter, J. H. S., 1974. The eyes of larval fish. In M. A. Ali (ed.), Vision in Fishes. Plenum Press, N.Y.: 427–443.Google Scholar
  6. Blaxter, J. H. S. & M. P. Jones, 1967. The development of the retina and retinomotor responses of the herring. J. mar. biol. Ass. U.K. 47: 677–697.Google Scholar
  7. Blaxter, J. H. S. & M. E. Staines, 1971. Food searching potential in marine fish larvae. In D. J. Crisp (ed.), 4th Europ. mar. Biol. Symp. Cambridge Univ. Press, Cambridge: 467–485.Google Scholar
  8. Boehlert, G. W., 1984 in press. Abrasive effects of Mt. St. Helens ash upon epidermis of yolk-sac larvae of Pacific herring, Clupea harengus pallasi. Mar. envir. Res. 12: 113–126.CrossRefGoogle Scholar
  9. Checkley, D. M., 1982. Selective feeding by Atlantic herring Clupea harengus larvae on zooplankton in natural assemblages. Mar. Ecol. Prog. Ser. 9: 245–253.Google Scholar
  10. Confer, J. L. & P. I. Blades, 1975. Omnivorous zooplankton and planktivorous fish. Limnol. Oceanogr. 20: 571–579.Google Scholar
  11. Confer, J. L., G. L. Howick, M. H. Corzette, S. L. Kramer, S. Fitzgibbon & R. Landesberg, 1978. Visual predation by planktivores. Oikos 31: 27–37.Google Scholar
  12. Doan, K. H., 1941. Relation of sauger catch to turbidity in Lake Erie. Ohio J. Sci. 41: 449–452.Google Scholar
  13. Ewart, J. W. & C. E. Epifanio, 1981. A tropical flagellate food for larval and juvenile oysters, (Crassostrea virginica) Gmelin. Aquaculture 22: 297–300.CrossRefGoogle Scholar
  14. Fruchter, J. S., D. E. Robertson, J. C. Evans, K. B. Olsen, E. A. Lepel, J. C. Laul, K. H. Abel, R. W. Sanders, P. D. Jackson, N. W. Wogman, R. W. Perkins, H. H. Van Tuyl, R. H. Beauchamp, J. W. Shade, J. L. Daniel, R. L. Erikson, G. A. Sehmel, R. N. Less, A. V. Robinson, O. R. Moss, J. K. Briant & W. C. Cannon, 1980. Mount St. Helens Ash from the 18 May 1980 eruption: Chemical, physical, mineralogical, and biological properties. Science 209: 1116–1125.Google Scholar
  15. Gardner, M. B., 1981. Effects of turbidity on feeding rates and selectivity of bluegills. Trans. Am. Fish. Soc. 110: 446–450.CrossRefGoogle Scholar
  16. Graham, J. J., 1972. Retention of larval herring within the Sheepscot Estuary of Maine. Fish. Bull., U.S. 70: 299–305.Google Scholar
  17. Heinle, D. R. & D. A. Flemer, 1975. Carbon requirements of a population of the estuarine marine copepod Eurytemora affinis. Mar. Biol. 31: 235–247.Google Scholar
  18. Houde, E. D., 1978. Critical food concentrations for larvae of three species of subtropical marine fishes. Bull. mar. Sci. 28: 395–411.Google Scholar
  19. Howick, G. L. & W. J. O'Brien, 1983. Piscivorous feeding behavior of large mouth bass: An experimental analysis. Trans. Am. Fish. Soc. 112: 508–516.CrossRefGoogle Scholar
  20. Hunter, J. R., 1972. Swimming and feeding behavior of larval anchovy, Engraulis mordax. Fish. Bull., U.S. 70: 821–838.Google Scholar
  21. Hunter, J. R. (ed.), 1976. Report of a colloquium on larval fish mortality studies and their relation to fishery research. Jan. 1975. NOAA Tech. Rep. NMFS Circ. 395.Google Scholar
  22. Hunter, J. R., 1981. Feeding ecology and predation of marine fish larvae. In R. Lasker (ed.), Marine Fish Larvae. Washington Sea Grant, Seattle: 33–77.Google Scholar
  23. Hunter, J. R., S. E. Kaupp & J. H. Taylor, 1981. Effects of solar and artificial ultraviolet-B radiation on larval northern anchovy, Engraulis mordax. Photochem. Photobiol. 34: 477–486.Google Scholar
  24. Hunter, J. R., J. H. Taylor & H. G. Moser, 1979. Effect of ultraviolet irradiation on eggs and larvae of the northern anchovy, Engraulis mordax, and Pacific mackerel, Scomber japonicus, during the embryonic stage. Photochem. Photobiol. 27: 1–14.Google Scholar
  25. Jones, M. P., F. G. T. Holliday & A. E. G. Dunn, 1966. The ultrastructure of the epidermis of larvae of the herring (Clupea harengus) in relation to the rearing salinity. J. mar. biol. Ass. U.K. 46: 235–239.Google Scholar
  26. Longwell, A. C. & J. B. Hughes, 1981. Cytologic, cytogenetic, and embryonic state of Atlantic mackerel eggs from surface waters of the New York Bight in relation to pollution. Rapp. P. V. Reun. Cons. Int. Explor. mer 178: 76–78.Google Scholar
  27. Moore, J. W. & I. A. Moore, 1976. The basis of food selection in flounders, Platichthys flesus (L.) in the Severn estuary. J. Fish. Biol. 9: 139–156.Google Scholar
  28. Muncy, R. J., G. J. Atchison, R. V. Bulkley, B. W. Menzel, L. G. Perry & R. G. Summerfelt, 1979. Effects of suspended solids and sediment on reproduction and early life of warm-water fishes: A review. U.S. Envir. Prot. Ag. Corvallis, Oregon, 101 pp.Google Scholar
  29. O'Connell, C. P., 1981. Development of organ systems in the northern anchovy, Engraulis morclax and other teleosts. Am. Zool. 21: 429–446.Google Scholar
  30. O'Connell, C. P. & L. P. Raymond, 1970. The effect of food density on survival and growth of Engraulis mordax (Girard) in the laboratory. J. exp. mar. Biol. Ecol. 5: 187–197.CrossRefGoogle Scholar
  31. Pearcy, W. G. & S. S. Myers, 1974. Larval fishes of Yaquina Bay, Oregon; A nursery ground for marine fishes? Fish. Bull., U.S. 72: 201–213.Google Scholar
  32. Ritchie, J. C., 1972. Sediment, fish, and fish habitat. J. Soil Wat. Conserv. 27: 124–125.Google Scholar
  33. Rosenthal, H., 1971. Wirkung von ‘Rotschlamm’ auf Embryonen und Larven des Herings, Clupea harengus. Helgoländer wiss. Meeresunters. 22: 366–376.Google Scholar
  34. Rosenthal, H. & D. F. Alderdice, 1976. Sublethal effects of environmental stressors, natural and pollutional, on marine fish eggs and larvae. J. Fish. Res. Bd Can. 33: 2047–2065.Google Scholar
  35. Rosenthal, H. & G. Hempel, 1970. Experimental studies in feeding and food requirements of herring larvae (Clupea harengus L.). In J. H. Steele (ed.), Marine Food Chains. Univ. Calif. Press, Berkeley: 344–364.Google Scholar
  36. Sherk, J. A., J. M. O'Connor & D. A. Neumann, 1975. Effects of suspended and deposited sediments on estuarine environments. In L. E. Cronin (ed.), Estuarine Research. Academic Press, N.Y. 2: 541–558.Google Scholar
  37. Steinfeld, J. D., 1972. Distribution of Pacific herring spawn in Yaquina Bay, Oregon, and observations on mortality through hatching. M.S. Thesis, Ore. St. Univ., Corvallis, 75 pp.Google Scholar
  38. Swenson, W. A. & M. L. Matson, 1976. Influence of turbidity on survival, growth, and distribution of larval lake herring (Coregonus artedii). Trans. Am. Fish. Soc. 105: 541–545.CrossRefGoogle Scholar
  39. Theilacker, G. H. & M. F. McMaster, 1971. Mass culture of the rotifer Brachionus plicatilis and its evaluation as a food for larval anchovies. Mar. Biol. 10: 183–188.Google Scholar
  40. Vinyard, G. L. & W. J. O'Brien, 1976. Effects of light and turbidity on the reactive distance of bluegill (Lepomis macrochirus). J. Fish. Res. Bd Can. 33: 2845–2849.Google Scholar
  41. Weihs, D., 1980. Respiration and depth control as possible reasons for swimming of northern anchovy, Engraulis mordax, yolk-sac larvae. Fish. Bull., U.S. 78: 109–118.Google Scholar
  42. Weinstein, M. P., S. L. Weiss, R. G. Hodson & L. R. Gerry, 1980. Retention of three taxa of postlarval fishes in an intensively flushed tidal estuary, Cape Fear River, North Carolina. Fish. Bull., U.S. 78: 419–436.Google Scholar

Copyright information

© Dr W. Junk Publishers 1985

Authors and Affiliations

  • George W. Boehlert
    • 1
  • John B. Morgan
    • 1
  1. 1.College of Oceanography and Marine Science CenterOregon State UniversityNewportU.S.A.
  2. 2.Southwest Fisheries Center Honolulu Laboratory, National Marine Fisheries ServiceNOAAHonoluluU.S.A.

Personalised recommendations