Hydrobiologia

, Volume 206, Issue 1, pp 73–85

Spatial variation in basic chemistry of streams draining a volcanic landscape on Costa Rica's Caribbean slope

  • Catherine M. Pringle
  • Frank J. Triska
  • Gregory Browder
Article

Abstract

Spatial variability in selected chemical, physical and biological parameters was examined in waters draining relatively pristine tropical forests spanning elevations from 35 to 2600 meters above sea level in a volcanic landscape on Costa Rica's Caribbean slope. Waters were sampled within three different vegetative life zones and two transition zones. Water temperatures ranged from 24–25 °C in streams draining lower elevations (35–250 m) in tropical wet forest, to 10 °C in a crater lake at 2600 m in montane forest. Ambient phosphorus levels (60–300 µg SRP L−1; 66–405 µg TP L−1) were high at sites within six pristine drainages at elevations between 35–350 m, while other undisturbed streams within and above this range in elevation were low (typically <30.0 µg SRP L−1). High ambient phosphorus levels within a given stream were not diagnostic of riparian swamp forest. Phosphorus levels (but not nitrate) were highly correlated with conductivity, Cl, Na, Ca, Mg and SO4. Results indicate two major stream types: 1) phosphorus-poor streams characterized by low levels of dissolved solids reflecting local weathering processes; and 2) phosphorus-rich streams characterized by relatively high Cl, SO4, Na, Mg, Ca and other dissolved solids, reflecting dissolution of basaltic rock at distant sources and/or input of volcanic brines. Phosphorus-poor streams were located within the entire elevation range, while phosphorus-rich streams were predominately located at the terminus of Pleistocene lava flows at low elevations. Results indicate that deep groundwater inputs, rich in phosphorus and other dissolved solids, surface from basaltic aquifers at breaks in landform along faults and/or where the foothills of the central mountain range merge with the coastal plain.

Key words

tropical stream phosphate nitrate groundwater volcanic landscape 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarado, G., 1985. Geologia de la Estacion Biologica La Selva, Organization for Tropical Studies, San Jose, Costa Rica, unpubl. report.Google Scholar
  2. American Public Health Association, 1985. Standard methods for the examination of water and wastewater, 15th Edn., APHA, 1268 pp.Google Scholar
  3. Bourgeois, W. W., D. W. Cole, H. Riekerk & S. P. Gessel, 1972. Geology and soils of comparative ecosystem study areas, Costa Rica. Contribution No. 11, Institute of Forestry Production, University of Washington, 112 pp.Google Scholar
  4. Brantley, S. L., A. Borgia, G. Rowe, J. F. Fernandez & J. R. Reynolds, 1987. Poas volcano crater lake acts as a condenser for acid metal-rich brine. Nature 330: 470–472.CrossRefGoogle Scholar
  5. Davis, S. N., 1969. Porosity and permeability of natural materials, p. 54–89. In: R. J. M. De Wiest (ed.) Flow through porous media, Academic Press, New York.Google Scholar
  6. Drever, J. I., 1982. Geochemistry of natural waters. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 388 pp.Google Scholar
  7. Freeze, R. A. & J. A. Cherry, 1979. Groundwater. Prentice Hall, Inc., Englewood Cliffs, N.J., 604 pp.Google Scholar
  8. Garrels, R. M. & F. T. Mackenzie, 1967. Origin of the chemical composition of some springs and lakes. In: Equilibrium concepts in natural water systems: Adv. Chem. Ser. 67: 222–242.Google Scholar
  9. Gessel, S. P., D. W. Cole, D. W. Johnson & J. Turner, 1980. The nutrient cycles of two Costa Rican forests, p. 23–44. In: Progress in Ecology, Vol. III. Today and Tomorrow's Printers and Publishers, New Delhi, India.Google Scholar
  10. Golterman, H. L., 1973. Natural phosphate sources in relation to phosphate budgets: A contribution to the understanding of eutrophication. Wat. Res. 7: 3–77.CrossRefGoogle Scholar
  11. Golterman, H. L., 1975. Chemistry of rivers, pp. 39–80. In: Whitton (ed.) River ecology. University of California Press, Berkeley, California, USA.Google Scholar
  12. Hartshorn, G. S., 1983. Introduction to the plants of Costa Rica, p. 118–157. In: D. H. Janzen (ed.) Costa Rican Natural History, University of Chicago Press, Chicago, IL, 816 pp.Google Scholar
  13. Hartshorn, G. S. & R. Peralta, 1988. Preliminary description of primary forests along the La Selva-Volcan Barva altitudinal transect, Costa Rica. pp. 281–295. In: F. Almeda and C. Pringle (eds.) Tropical Rainforests: Diversity and Conservation. Allen Press, Lawrence, KA, 306 pp.Google Scholar
  14. Holdridge, L. R., W. C. Grenke, W. H. Hatheway, T. Liang & J. A. Tosi Jr., 1971. Forest environments in tropical life zones: A pilot study. Pergamon Press, Oxford, England.Google Scholar
  15. Johnson, D. W., D. W. Cole & S. P. Gessel, 1975. Processes of nutrient transfer in a tropical rainforest. Biotropica 7: 208–215.Google Scholar
  16. Johnson, D. W., D. W. Cole & S. P. Gessel, 1979. Acid precipitation and soil adsorption properties in a tropical and in a temperate forest soil. Biotropica 11: 38–42.Google Scholar
  17. Jordan, C., 1985. Nutrient cycling in tropical forest ecosystems: Principles and their application in management and conservation. John Wiley and Sons, Chichester, England.Google Scholar
  18. Kamphake, L. S., S. A. Hannah & J. M. Cohen, 1967. An automated analysis of nitrate by hydrazine reduction. Wat. Res. 1: 205–216.CrossRefGoogle Scholar
  19. Kilham, P. & R. E. Hecky, 1973. Fluoride: Chemical and ecological significance in East African waters and sediments. Limnol. Oceanogr. 18: 932–945.Google Scholar
  20. Lesack, L. F., R. E. Hecky & J. M. Melack, 1984. Transport of carbon, nitrogen, phosphorus and major solutes in the Gambia River, West Africa. Limnol. Oceanogr. 29: 816–830.Google Scholar
  21. Liddicoat, M. I., S. Tibbits & E. I. Butler, 1975. The determination of ammonia in seawater. Limnol. Oceanogr. 20: 131–132.Google Scholar
  22. Lieberman, M., D. Lieberman, G. S. Hartshorn & R. Peralta, 1985. Small-scale altitudinal variation in lowland wet tropical forest vegetation. J. Ecol. 73: 505–516.Google Scholar
  23. Marrs, R. H., J. Proctor, A. Heaney & M. D. Mountford, 1988. Changes in soil nitrogen mineralization and nitrification along an altitudinal transect in tropical rainforest in Costa Rica. J. Ecol. 76: 466–482.Google Scholar
  24. McColl, J. G., 1970. Properties of some natural waters in a tropical wet forest of Costa Rica. BioScience 20: 1096–1100.Google Scholar
  25. Nuhn, H., 1978. Informacion geografico regional: Atlas preliminar de Costa Rica. Instituto Geografico Nacional, San Jose, Costa Rica.Google Scholar
  26. Omernik, J. M., 1977. Nonpoint source stream nutrient level relationships: A nationwide survey. EPA-600/3–77–105, Ecol. Res. Ser., US EPA, Washington, D.C.Google Scholar
  27. Paaby-Hansen, P., 1988. Light and nutrient limitation in a Costa Rican lowland stream. Dissertation, The University of California, Davis, California, USA.Google Scholar
  28. Parfitt, R. L., 1980. Chemical properties of variable charge soils. In: B. K. G. Theng (ed.) Soils with variable charge. NZ Soc. Soil Sci., Lower Hutt, NZ: 167–194.Google Scholar
  29. Parker, G. G., 1985. The effect of disturbance on water and solute budgets of hillslope tropical rainforest in northeastern Costa Rica. Dissertation, The University of Georgia, Athens, Georgia, USA.Google Scholar
  30. Pringle, C. M., 1988. History of conservation efforts and initial exploration of the lower extension of Parque Nacional Braulio Carrillo, p. 225–241. In: F. Almeda and C. Pringle (eds.) Diversity and conservation of tropical rainforests. Allen Press, Lawrence, KA, 306 pp.Google Scholar
  31. Pringle, C. M., P. Paaby-Hansen, P. D. Vaux & C. R. Goldman, 1986. In situ nutrient assays of periphyton growth in a lowland Costa Rican stream. Hydrobiologia 134: 207–213.Google Scholar
  32. Pringle, C. M. & F. J. Triska, 1986. Variation in chemical and physical properties of streams draining the La Selva-Volcan Barva transect: Results of a National Geographic Society expedition into Braulio Carrillo Park, April 1986. Technical Report of the Organization for Tropical Studies, Durham, NC, 25 pp.Google Scholar
  33. Pringle, C. M., I. Chacon, M. H. Grayum, H. W. Greene, G. S. Hartshorn, G. E. Schatz, F. G. Stiles, C. Gomez & M. Rodriguez, 1984. Natural history observations of the La Selva Protection Zone, Costa Rica. Brenesia 22: 189–206.Google Scholar
  34. Pringle, C. M. & F. J. Triska. (ms submitted) Effects of regional volcanic groundwater on nutrient dynamics of a lowland tropical stream. Ecology.Google Scholar
  35. Robertson, G. P., 1984. Nitrification and nitrogen mineralization in a lowland rainforest succession in Costa Rica, Central America. Oecologia 61: 99–104.Google Scholar
  36. Sancho, F. & R. Mata, 1987. Estudio detallado de suelos, Estacion Biologica ‘La Selva’, Organization for Tropical Studies, San Jose, Costa Rica.Google Scholar
  37. Sollins, P., G. Spycher & C. A. Glassman, 1984. Net nitrogen mineralization from light- and heavy-fraction forest soil organic matter. Soil Biol. Biochem. 16: 31–37.CrossRefGoogle Scholar
  38. Sollins, P., F. Sancho, R. L. Sanford & G. G. Parker, (in press) Soils of La Selva. In: L. McDade, K. Bawa, H. Hespenheide, and G. Hartshorn (eds.) La Selva: Ecology and Natural History of a neotropical rainforest. University of Chicago Press, Chicago.Google Scholar
  39. Solorzano, L., 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr. 14: 799–801.Google Scholar
  40. Strickland, J. D. H. & T. R. Parsons, 1972. A practical handbook of seawater analysis. 2nd ed., Bulletin of the Fisheries Res. Bd. Canada. No. 167, Ottawa, 311 pp.Google Scholar
  41. Talling, J. F. & I. B. Talling, 1965. The chemical composition of African lake waters. Int. Revue ges. Hydrobiol. Hydrogr. 50: 421–463.Google Scholar
  42. Todd, D. K., 1980. Groundwater hydrology, 2nd ed. John Wiley & Sons, Inc., New York, 535 pp.Google Scholar
  43. Vitousek, P. M., 1984. Litterfall, nutrient cycling and nutrient limitation in tropical forests. Ecology 65: 285–298.Google Scholar
  44. Vitousek, P. M. & J. S. Denslow, 1986. Nitrogen and phosphorus availability in treefall gaps of a lowland tropical rainforest. J. Ecol. 74: 1167–1178.Google Scholar
  45. Vitousek, P. M. & J. S. Denslow, 1987. Differences in extractable phosphorus among soils of the La Selva Biological Station, Costa Rica. Biotropica 19: 167–170.Google Scholar
  46. Werner, P., 1984. Changes in soil properties during tropical wet forest succession in Costa Rica. Biotropica 16: 43–50.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Catherine M. Pringle
    • 1
  • Frank J. Triska
    • 2
  • Gregory Browder
    • 3
  1. 1.Section of EcologyCornell UniversityIthacaUSA
  2. 2.U.S. Geological SurveyMenlo ParkUSA
  3. 3.Division of Sanitary EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations