International Journal of Fracture

, Volume 79, Issue 4, pp 341–350 | Cite as

Determination for the time-to-fracture of solids

  • L. L. MishnaevskyJr.
Article

Abstract

A method to determine the time to fracture taking into account the physical mechanisms of microcracks and crack formation is developed on the basis of the fractal model of fracture. The fractal dimension of a crack at different stages of its growth is determined theoretically. The damage evolution law which allows for the kinetic and microstructural properties of a material is obtained on the basis of the kinetic theory of strength. Conditions at which the microcracks accumulation gives way to the propagation of a large crack are determined with the use of the percolation theory. It is shown that the fractal dimension of the initial part of a crack is much more than the fractal dimension of the rest of the crack.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.N.Zhurkov, ‘Kinetic Concept of the Strength of Solids’, International Journal of Fracture Mechanics 1:4 (1965) 311–323.Google Scholar
  2. 2.
    C.C. Hsiao, ‘Kinetic Strength of Solids’, Proceedings of International Conference on Fracture-7, K. Salama et al. (eds), Vol.4, Pergamon Press (1989) 2913–2919.Google Scholar
  3. 3.
    T.Yokobori, An Interdisciplinary Approach to Fracture and Strength of Solids, Wolter-Noordhoff Ltd, Groningen (1968).Google Scholar
  4. 4.
    V.M.Finkel, Physics of Fracture, Metallurgiya, Moscow (1970).Google Scholar
  5. 5.
    A. Pineau, ‘Review of Fracture Micromechanisms and a Local Approach to Predicting Crack Resistance in Low Strength Steels’, in Advances in Fracture Research, Proceeding 5th International Conference on Fracture, D. Francois (ed.), Pergamon Press, Vol.2 (1981) 553–580.Google Scholar
  6. 6.
    T.Shioya et al. Micromechanism of Dynamic Crack Propagation in Brittle Materials’, Journale de Physique, Colloque C3, Suppl. 9, 49 (1988) 253–260.Google Scholar
  7. 7.
    L.L.MishnaevskyJr., ‘A New Approach to the Determination of the Crack Velocity versus Crack Length Relation’, International Journal of Fatigue and Fracture of Engineering Materials and Structures 17:10 (1994) 1205–1212.Google Scholar
  8. 8.
    L.L. Mishnaevsky, Jr. ‘Mathematical Modelling of Crack Formation in Brittle Materials’, in Proceeding of 10th European Conference on Fracture, Berlin, EMAS, K.H. Schwalbe and C. Berger (eds), 1 (1994) 357–361.Google Scholar
  9. 9.
    J.Lemaitre, A Course on Damage Mechanics, Springer-Verlag, Berlin (1992).Google Scholar
  10. 10.
    T.L.Chelidze, ‘Percolation and Fracture, Physics of the Earth’, Planetary Interiors, 28 (1982) 93.Google Scholar
  11. 11.
    D.Krajcinovic and M.Basista, ‘Statistical Models for Brittle Response of Solids’, in Constitutive Laws for Engineering Materials, C.S.Desai et al. (eds.) ASME Press, NY (1991) 417–423.Google Scholar
  12. 12.
    M.Ostoia-Starzewski, ‘Damage in Random Microstructure: Size Effects, Fractals and Entropy Maximization’, in Mechanics Pan-America 1989, C.R.Steele et al. (eds.) ASME Press, NY (1989) 202–213.Google Scholar
  13. 13.
    M.Watanabe, ‘Phenomenological Equation of a Dynamic Fracture’, Physics Letters 179 (1993) 41–44.Google Scholar
  14. 14.
    G.P.Cherepanov, Mechanics of Brittle Fracture, Nauka, Moscow (1974).Google Scholar
  15. 15.
    B.M.Smirnov, Physics of Fractal Aggregates, Nauka, Moscow (1991) 45–67.Google Scholar
  16. 16.
    T.Viczek, Fractal Growth Phenomena, Singapore, World Scientific (1989).Google Scholar
  17. 17.
    D.Stauffer, Introduction into Percolation Theory, Taylor and Francis, London (1985).Google Scholar
  18. 18.
    I.M. Sokolov, ‘Dimensions and Other Geometrical Critical Indices in the Percolation Theory’, in Progress in Physical Sciences 150: 2 (1986) 221–255.Google Scholar
  19. 19.
    T. Chelidze and Y. Guegen, ‘Evidence of Fractal Fracture’, International Journal of Rock Mechanics and Mining Science 27: 3, 223–225.Google Scholar
  20. 20.
    L.L.MishnaevskyJr., ‘Informational Model of Rock Destruction and the Principle of Mining Tool Improvement’, in Fracture and Damage of Concrete and Rock (FDCR-2), H.P.Rossmanith (ed.), EF Spon, London (1993) 393–399.Google Scholar
  21. 21.
    A.M.Freudenthal, ‘Statistical Approach to Brittle Fracture’, in Fracture. An Advanced Treatise, H.Liebowitz (ed.) Vol.2, Academic Press, NY (1968) 592–618.Google Scholar
  22. 22.
    K.Hellan, Introduction to Fracture Mechanics, McGraw Hill, NY (1984).Google Scholar
  23. 23.
    K.J. Miller, ‘Some Recent Advances in Metal Fatigue: Understanding the Two Thresholds of Fatigue Behaviour’, in Fracture Mechanics: Successes and Problems, V.V. Panasyuk et al. (eds.), Abstracts of ICF-8, Lviv, KPMI, Vol. 1 (1993) 149.Google Scholar
  24. 24.
    Handbook of Mathematical Functions, M.Abramovitz and I.A.Stegun (eds.), Dover Publications, Inc., NY (1972) 231.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • L. L. MishnaevskyJr.
    • 1
  1. 1.University of Stuttgart, MPAStuttgartGermany

Personalised recommendations