Advertisement

International Journal of Fracture

, Volume 43, Issue 1, pp 1–18 | Cite as

Interface crack between two elastic layers

  • Zhigang Suo
  • John W. Hutchinson
Article

Abstract

A semi-infinite interface crack between two infinite isotropic elastic layers under general edge loading conditions is considered. The problem can be solved analytically except for a single real scalar independent of loading, which is then extracted from the numerical solution for one particular loading combination. Two applications of the basic solution are made which illustrate its utility: interface cracking driven by residual stress in a thin film on a substrate, and an analysis of a test specimen proposed recently for measuring interface toughness.

Keywords

Thin Film Mechanical Engineer Residual Stress Civil Engineer Test Specimen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

On considère une fissure d'interface semi-infinie entre deux couches infinies élastiques et isotropes soumises à des conditions générales de sollicitations sur leurs bords. Le problème peut être solutionné par voie analytique, à l'exception d'un scalaire réel simple, indépendant de la charge, qui est extrait de la solution numérique relative à une combinaison particulière des sollicitations.

On procède à deux applications de la solution de base qui illustrent son utilité: l'une est relative à une fissure d'interface soumise aux tensions résiduelles dans un film mince déposé sur un substrat. L'autre est l'analyse d'une éprouvette d'essai proposée récemment pour mesurer la ténacité de l'interface.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.D.Thouless, A.G.Evans, M.F.Ashby and J.W.Hutchinson, Acta Metallurgica 35 (1987) 1333–1341.CrossRefGoogle Scholar
  2. 2.
    M.S.Hu, M.D.Thouless and A.G.Evans, Acta Metallurgica 36 (1988) 1301–1307.CrossRefGoogle Scholar
  3. 3.
    M.D.Drory, M.D.Thouless and A.G.Evans, Acta Metallurgica 36 (1988) 2019–2028.CrossRefGoogle Scholar
  4. 4.
    Z. Suo and J.W. Hutchinson, Steady-state Cracking in Brittle Substrates beneath Adherent Films, Harvard University Report MECH-132 (1988), to appear in International Journal of Solids and Structures.Google Scholar
  5. 5.
    P.G.Charalambides, J.Lund, A.G.Evans and R.M.McMeeking, Journal of Applied Mechanics 56 (1989) 77–82.Google Scholar
  6. 6.
    J.R.Rice, Journal of Applied Mechanics 55 (1988) 98–103.Google Scholar
  7. 7.
    J.Dundurs, in Mathematical Theory of Dislocations, American Society of Mechanical Engineering, New York (1969) 70–115.Google Scholar
  8. 8.
    J.W.Hutchinson, M.E.Mear and J.R.Rice, Journal of Applied Mechanics 54 (1987) 828–832.Google Scholar
  9. 9.
    G.P.Cherepanov, Mechanics of Brittle Fracture, Chapter 9, McGraw-Hill, New York (1979).Google Scholar
  10. 10.
    M.B.Civelek, in Fracture Mechanics: Sixteenth Symposium, STP 868, M.F.Kanninen and A.T.Hopper (eds.), American Society for Testing and Materials, Philadelphia (1985) 7–26.Google Scholar
  11. 11.
    M.Y. He and J.W. Hutchinson, Kinking of a Crack Out of an Interface, Harvard University Report MECH-113 (1988), to appear in Journal of Applied Mechanics.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Zhigang Suo
    • 1
  • John W. Hutchinson
    • 1
  1. 1.Division of Applied SciencesHarvard UniversityCambridgeUSA

Personalised recommendations