Advertisement

International Journal of Fracture

, Volume 36, Issue 2, pp 101–119 | Cite as

On the calculation of energy release rates for cracked laminates

  • J. G. Williams
Article

Abstract

A general method is given for calculating the energy release rate G from the local values of bending moments and loads in a cracked laminate. This total value is then partitioned into mode I and II components. Examples are given of the analysis of several test geometries including both variable and constant ratio mixed mode tests. Solutions for compression failures with buckling are also given. Finally there is some discussion of specimen compliances and stability criteria for fixed load and fixed displacement.

Keywords

Mechanical Engineer Civil Engineer Release Rate Energy Release Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

On fournit une méthode générale de calcul de la vitesse G de relaxation de l'énergie, à partir des valeurs locales des moments de flexion et des charges agissant sur un composite lamellaire fissurée. On divise selon les composantes de Mode I et de Mode II la valeur totale obtenue. Des exemples d'analyse appliquée à diverses géométries d'essai sont fournis, qui sont relatifs à des essais de mode mixte à ratios variable ou constant. On fournit également les solutions relatives à de la ruine par compression avec flambage. Enfin, on discute de la compliance des éprouvettes et des critères de stabilité dans le cas de charge imposées et de déplacements imposés.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.C. Leach, D.C. Curtis, and D.R. Tamblin, ASTM Symposium “Toughened Composites” Houston (March 1985) to be published as STP.Google Scholar
  2. 2.
    W.L. Bradley and R.N. Cohen ASTM STP 876 (1985) 389–410.Google Scholar
  3. 3.
    A.J. Russell and K.N. Street, ASTM STP 876 (1985) 349–370.Google Scholar
  4. 4.
    A.J. Kinloch and R.J. Young, Fracture Behaviour of Polymers, Elsevier Publishers (1983).Google Scholar
  5. 5.
    S.Ilic and J.F.William, Theoretical and Applied Fracture Mechanics 6. No. 2 (1986) 121–127.Google Scholar
  6. 6.
    J.F.Williams, D.C.Stauffer and R.Jones, Journal of Composites Structures 5 (1986) 203–216.CrossRefGoogle Scholar
  7. 7.
    S.S.Wang, N.M.Zahlau and H.Suemasu, Journal of Composite Materials 19 (1985) 296–316 and 317–330.Google Scholar
  8. 8.
    J.G.Williams, Journal of Composite Materials 21, No. 4 (1987) 330–361.Google Scholar
  9. 9.
    J.G.Williams, Proceedings of ICCM (VI) Vol. 3 (1987) 233–241.Google Scholar
  10. 10.
    J.G.Williams, Fracture Mechanics of Polymers, Ellis Horwood, Wiley (1984).Google Scholar
  11. 11.
    S.Hashemi, A.J.Kinloch and J.G.Williams, Proceedings of ICCM (VI) Vol. 3 (1987) 254–264.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • J. G. Williams
    • 1
  1. 1.Department of Mechanical EngineeringImperial CollegeLondonU.K.

Personalised recommendations