Hydrobiologia

, Volume 323, Issue 2, pp 129–138 | Cite as

Decomposition rates and phosphorus concentrations of purple Loosestrife (Lythrum salicaria) and Cattail (Typha spp.) in fourteen Minnesota wetlands

  • Sarah L. Emery
  • James A. Perry
Article

Abstract

Purple Loosestrife is rapidly displacing native vegetation in North American wetlands. Associated changes in wetland plant communities are well understood. Effects of Loosestrife invasion on nutrient cycling and decomposition rates in affected wetlands are unknown, though potentially of significance to wetland function. We used litter bag methods to quantify decomposition rates and phosphorus concentrations of purple Loosestrife (Lythrum salicaria) and native cattails (Typha spp.) in fourteen Minnesota wetlands. A 170-day study that began in autumn modeled decomposition of Loosestrife leaves. Loosestrife stems andTypha shoots that had overwintered and fragmented were measured in a 280- day study that began in spring. In general, Loosestrife leaves decomposed most rapidly of the three;Typha shoots decomposed faster than Loosestrife stems. Significant decay coefficients (k-values) were determined by F-testing single exponential model regressions of different vegetation types in the fourteen wetlands. Significant decay coefficients were:k = 2.5 × 10−3 and 4.32 × 10−3 for all Loosestrife leaves (170 d);k = 7.2 × 10−4 and 1.11 × 10−3 for overwintered Loosestrife stems (280-d) andk = 7.9 × 10−4, 1.42 × 10−3 and 2.24 × 10−3 for overwinteredTypha shoots (280-d). Phosphorus concentrations of plant tissue showed an initial leaching followed by stabilization or increase probably associated with microbial growth. Loosestrife leaves had twice the phosphorus concentration of Loosestrife stems andTypha shoots. Our results indicate that conversion of wetland vegetation from cattails to Loosestrife may result in significant change in wetland function by altering timing of litter input and downstream phosphorus loads. Conversion of a riverine, flow- through wetland fromTypha to Loosestrife may effectively accelerate eutrophication of downstream water bodies. Impacts of Loosestrife invasion must be considered when wetlands are managed for wildlife or for improvement of downstream water quality.

Key words

Loosestrife Lythrum salicaria cattail decomposition phosphorus wetland 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, N. O. & P. D. Ascher, 1993. Male and female fertility of Loosestrife (Lythrum) cultivars. J. Am. Soc. for Hort. Sci. 118: 851–858.Google Scholar
  2. Boyd, C. E., 1970. Losses of mineral nutrients during decomposition ofTypha Latifolia. Arch. Hydrobiologia 66: 511–517.Google Scholar
  3. Brinson, M. M., A. E. Lugo & S. Brown, 1981. Primary productivity, decomposition and consumer activity in freshwater wetlands. Annu. Rev. Ecol. Syst. 12: 123–161.CrossRefGoogle Scholar
  4. Brown, R. G., 1985. Effects of an urban wetland on sediments and nutrient loads in runoff. Wetlands 4: 147–158.Google Scholar
  5. Chapman, H. D. & P. F. Pratt, 1961. Methods of analysis for soils, plants, and water. Agric. Publ. Univ. of Calif., Riverside, 309 pp.Google Scholar
  6. Cowardin, L. M., V. Carter, F. C. Golet & E. T. LaRoe, 1979. Classification of wetlands and deepwater habitats of the United States. U.S. Fish Wildl. Serv., Washington, D.C., 103 pp.Google Scholar
  7. Davis, C. B. & A. G. van der Valk, 1978a. The decomposition of standing and fallen litter ofTypha glauca andScirpus fluviatilis. Can. J. Bot. 56: 662–675.Google Scholar
  8. Davis, C. B. & A. G. van der Valk, 1978b. Litter decomposition in prairie glacial marshes. In R. E. Good, D. F. Whigham & R. L. Simpson (eds), Freshwater wetlands ecological processes and management potential. Academic Press, New York: 99–113.Google Scholar
  9. Davis, C. B. & A. G. van der Valk, 1983. Uptake and release of nutrients by living and decomposingTypha glauca Godr. tissues at Eagle Lake, Iowa. Aquat. Bot. 16: 75–89.CrossRefGoogle Scholar
  10. Gallagher, J. L., 1978. Decomposition processes: summary and recommendations. In R. E. Good, D. F. Wigham & R. L. Simpson (eds), Freshwater wetlands ecological processes and management potential. Academic Press, New York: 145–151.Google Scholar
  11. Hill, B. H., 1985. The breakdown of macrophytes in a reservoir wetland. Aquat. Bot. 21: 23–31.CrossRefGoogle Scholar
  12. Jenny, H., S. P. Gessel & F. T. Bingham, 1949. Comparative study of decomposition rates of organic matter in temperate and tropical regions. Soil Sci. 68: 419–432.Google Scholar
  13. John, M. K., 1970. Colorimetric determination of phosphorus in soil and plant materials with ascorbic acid. Soil Sci. 109: 214–220.Google Scholar
  14. Lee, G. F., E. Bentley & R. Amundson, 1975. Effects of marshes on water quality systems. In A. D. Hasler (ed.), Coupling of land and water systems. Springer-Verlag. New York: 105–127.Google Scholar
  15. Mason, C. F. & R. J. Bryant, 1975. Production, nutrient content and decomposition ofPhragmites communis Trin. andTypha angustifolia L. J. Ecol. 63: 71–95.CrossRefGoogle Scholar
  16. Murkin, H. R., A. G. van der Valk & C. B. Davis, 1989. Decomposition of four dominant macrophytes in the Delta Marsh, Manitoba. Wildl. Soc. Bull. 17: 215–221.Google Scholar
  17. Nelson, J. W., J. A. Kadlec & H. R. Murkin, 1990. Seasonal comparison of weight loss for two types ofTypha glauca Godr. leaf litter. Aquat. Bot. 37: 299–314.CrossRefGoogle Scholar
  18. Payne, G. A., M. A. Ayers & R. G. Brown, 1982. Quality of runoff from small watersheds in Twin Cities metropolitan areas, Minnesota — hydrologic data for 1980. U.S.G.S. Open File Report (82–504), St. Paul, Minnesota 289 pp.Google Scholar
  19. Petersen, R. C. & K. W. Cummins, 1974. Heat processing in woodland streams. Freshwat. Biol. 4: 343–368.CrossRefGoogle Scholar
  20. Puriveth, P., 1980. Decomposition of emergent macrophytes in a Wisconsin marsh. Hydrobiologia 72: 231–242.CrossRefGoogle Scholar
  21. Rawinski, T. J. & R. A. Malecki, 1984. Ecological relationships among purple Loosestrife, cattail and wildlife at Montezuma National Wildlife Refuge. New York Fish and Game Journal 31: 81–87.Google Scholar
  22. Rodgers, J. H., M. E. McKevitt, D. O. Hammerlund, K. L. Dicksin & J. Cairns Jr., 1983. Primary productivity and decomposition of submergent and emergent aquatic plants of two Appalachian rivers. In T. D. Fontaine & S. M. Bartell (eds), Dynamics of lotic ecosystems. Ann Arbor Science, Ann Arbor Michigan: 283–301.Google Scholar
  23. Shamsi, S. R. A. & F. H. Whitehead, 1974. Comparative ecophysiology ofEpilobium hirsutum L. andLythrum salicaria L. II. Growth and develomment in relation to light. J. Ecol. 62: 631–645.CrossRefGoogle Scholar
  24. Shaw, S. & C. G. Fredine, 1971. Wetlands of the United States-Circular 39. U.S. Dept. of the Interior, Fish and Wildlife Service, St. Petersberg, 67 pp.Google Scholar
  25. Sloey, W. E., F. L. Spangler & C. W. Fetter, Jr., 1978. Management of freshwater wetlands for nutrient assimilation. In R. E. Good, D. F. Whigham & R. L. Simpson (eds), Freshwater wetlands ecological processes and management potential. Academic Press, New York: 321–340.Google Scholar
  26. Thompson, D. Q., R. L. Stuckey & E. B. Thompson, 1987. Spread, impact, and control of purple Loosestrife (Lythrum salicaria) in North American wetlands. U.S. Fish Wildl. Serv., Washington, D.C., 55 pp.Google Scholar
  27. Thompson, D. Q., 1991. History of purple Loosestrife (Lythrum salicaria L.) biologicalm control efforts. Nat. Areas J. 11: 148–150.Google Scholar
  28. van der Valk, A. G., J. M. Rhymer & H. R. Murkin, 1991. Flooding and the decomposition of litter of four emergent plant species in a prairie wetland. Wetlands 11: 1–16.CrossRefGoogle Scholar
  29. Webster, J. R. & E. F. Benfield, 1986. Vascular plant breakdown in freshwater ecosystems. Annu. Rev. Ecol. Syst. 17: 567–594.CrossRefGoogle Scholar
  30. Wieder, R. K. & G. E. Lang, 1982. A critique of the analytical methods used in examining decomposition data obtained from litter bags. J. Ecol. 63: 1636–1642.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Sarah L. Emery
    • 1
  • James A. Perry
    • 1
  1. 1.Department of Forest ResourcesUniversity of MinnesotaSt PaulUSA

Personalised recommendations