Plant Molecular Biology

, Volume 12, Issue 1, pp 31–40 | Cite as

Specificity of Agrobacterium-mediated delivery of maize streak virus DNA to members of the Gramineae

  • Margaret I. Boulton
  • Wallace G. Buchholz
  • Melanie S. Marks
  • Peter G. Markham
  • Jeffrey W. Davies


Parameters affecting the efficiency of agroinfection of maize streak virus (MSV) in maize have been determined. Monomeric units, cloned at a number of sites in the MSV genome were not infectious but multimeric units containing partial duplications were equally as infectious as complete tandem dimeric clones. Inoculation of tandem dimeric units conjugated into different strains of Agrobacterium showed that both A. tumefaciens and A. rhizogenes were able to transfer DNA to maize and this ability was Ti (or Ri) plasmid-specific. Nopaline strains of A. tumefaciens and both agropine and mannopine A. rhizogenes strains efficiently transferred MSV DNA to maize. A number of strains were capable of MSV DNA transfer to other members of the Gramineae, providing information which may be essential for Agrobacterium-mediated transformation of monocotyledonous plants.

Key words

agroinfection Agrobacterium strains maize streak virus Gramineae maize 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amasino RM, Miller CO: Hormonal control of tobacco crown gall tumor morphology. Plant Physiol 69: 389–392 (1982).Google Scholar
  2. 2.
    Bevan M: Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12: 8711–8721 (1984).PubMedGoogle Scholar
  3. 3.
    Binns AN, Sciaky D, Wood HN: Variation in hormone autonomy and regenerative potential of cells tranformed by strain A66 of Agrobacterium tumefaciens. Cell 31: 605–612 (1982).CrossRefPubMedGoogle Scholar
  4. 4.
    Chilton M-D, Montoya AL, Merlo DJ, Drummond MH, Nutter R, Gordon MP, Nester EW: Restriction endonuclease mapping of a plasmid that confers oncogenicity upon Agrobacterium tumefaciens strain B6–806. Plasmid 1: 254–269 (1978).PubMedGoogle Scholar
  5. 5.
    Constantino P, Mauro ML, Micheli G, Risuleo G, Hooykaas PJJ, Schilperoort R: Fingerprinting and sequence homology of plasmids from different virulent strains of Agrobacterium rhizogenes. Plasmid 5: 170–182 (1981).PubMedGoogle Scholar
  6. 6.
    Damsteegt VD: Maize streak virus: 1. Host range and vulnerability of maize germ plasm. Plant Disease 67: 734–737 (1983).Google Scholar
  7. 7.
    DeCleene M: The susceptibility of monocotyledons to Agrobacterium tumefaciens. Phytopath Z 113: 81–89 (1985).Google Scholar
  8. 8.
    DeVos G, DeBeuckeleer M, VanMontagu M, Schell J: Restriction endonuclease mapping of the octopine tumor-inducing plasmid pTiAch5. Plasmid 6: 249–253 (1981).PubMedGoogle Scholar
  9. 9.
    Ditta G, Stanfield S, Corbin D, Helinski DR: Broad host range DNA cloning system for gram-negative bacteria: construction of gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77: 7347–7351 (1980).PubMedGoogle Scholar
  10. 10.
    Donson J, Gunn HV, Woolston CJ, Pinner MS, Boulton MI, Mullineaux PM, Davies JW: Agrobacterium-mediated infectivity of cloned digitaria streak virus DNA. Virology 162: 248–250 (1988).CrossRefPubMedGoogle Scholar
  11. 11.
    Garfinkel DJ, Simpson RB, Ream LW, White FF, Gordon MP, Nester EW: Genetic analysis of crown gall: fine structure map of the T-DNA by site-directed mutagenesis. Cell 27: 143–153 (1981).CrossRefPubMedGoogle Scholar
  12. 12.
    Graves ACF, Goldman SL: The transformation of Zea mays seedlings with Agrobacterium tumefaciens. Plant Mol Biol 7: 43–50 (1986).Google Scholar
  13. 13.
    Grimsley N, Bisaro D: Agroinfection. In: Hohn Th, Schell J (eds) Plant Gene Research: Plant DNA Infectious Agents, pp. 87–107. Springer-Verlag, Vienna/New York (1987).Google Scholar
  14. 14.
    Grimsley N, Hohn B, Hohn T, Walden RM: Agroinfection, an alternative route for plant virus infection by using Ti plasmid. Proc Natl Acad Sci USA 83: 3282–3286 (1986).Google Scholar
  15. 15.
    Grimsley N, Hohn T, Davies JW, Hohn B: Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature 325: 177–179 (1987).CrossRefGoogle Scholar
  16. 16.
    Grimsley NH, Ramos C, Hein T, Hohn B: Meristematic tissues of maize plants are most susceptible to agroinfection with maize streak virus. Biotechnology 6: 185–189 (1988).CrossRefGoogle Scholar
  17. 17.
    Grunstein M, Hogness D: Colony hybridization: A method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci USA 72: 3961–3965 (1975).PubMedGoogle Scholar
  18. 18.
    Harrison BD: Advances in geminivirus research. Ann Rev Phytopathol 23: 55–82 (1985).CrossRefGoogle Scholar
  19. 19.
    Hayes RJ, MacDonald H, Coutts RHA, Buck KW: Agroinfection of Triticum aestivum with cloned DNA of wheat dwarf virus. J Gen Virol 69: 891–896 (1988).Google Scholar
  20. 20.
    Hirooka T, Kado CI: Location of the right boundary of the virulence region on Agrobacterium tumefaciens plasmid pTiC58 and a host-specificity gene next to the boundary. J Bact 168: 237–243 (1986).PubMedGoogle Scholar
  21. 21.
    Hoekema A, Hooykaas PJ, Schilperoort RA: Transfer of the octopine T-DNA segment to plant cells mediated by different types of Agrobacterium tumor-or root-inducing plasmids: Generality of virulence systems. J Bact 158: 383–385 (1984).PubMedGoogle Scholar
  22. 22.
    Hohn B, Hohn T, Boulton MI, Davies JW, Grimsley N: Agroinfection of Zea mays with maize streak virus DNA. In: vonWettstein D, Chua N-H (eds) Plant Molecular Biology, pp. 459–468. Plenum, New York (1987).Google Scholar
  23. 23.
    Hood EE, Helmer GL, Fraley RT, Chilton M-D: The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bact. 168: 1291–1301 (1986).PubMedGoogle Scholar
  24. 24.
    Hooykaas PJJ, Hofker M, DenDulk-Ras H, Schilperoort RA. A comparison of virulence determinants in an octopine Ti plasmid, a nopaline Ti plasmid, and an Ri plasmid by complementation analysis of Agrobacterium tumefaciens mutants. Plasmid 11: 195–205 (1984).PubMedGoogle Scholar
  25. 25.
    Hooykaas PJJ, Schilperoort RA: The molecular genetics of crown gall tumorigenesis. In: Scandalios JG, Caspari EW (eds) Advances in Genetics, Vol. 22, pp. 210–283. Academic Press, New York (1984).Google Scholar
  26. 26.
    Janssens A, Genetello C, VanMontagu M, Zambryski P: Plants cells induce transcription of the Agrobacterium tumefaciens nopaline pTiC58 virulence region. Plant Science 17: 185–193 (1986).CrossRefGoogle Scholar
  27. 27.
    Kado CI, Heskett MG: Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas, and Xanthomonas. Phytopathology 60: 969–976 (1970).PubMedGoogle Scholar
  28. 28.
    Keane PJ, Kerr A, New PB: Crown gall of stone fruit. II. Identification and nomenclature of Agrobacterium isolates. Aust J Biol Sci 23: 585–595 (1970).Google Scholar
  29. 29.
    Klapwijk PM, Schilperoort RA: Negative control of octopine degradation and transfer of octopine Ti plasmid of Agrobacterium tumefaciens. J Bact 139: 424–431 (1979).PubMedGoogle Scholar
  30. 30.
    Knauf VC, Panagopoulos CG, Nester EW: Genetic factors controlling the host range of Agrobacterium tumefaciens. Phytopathology 72: 1545–1549 (1982).Google Scholar
  31. 31.
    Lazarowitz SG: The molecular characterisation of geminiviruses. Plant Mol Biol Reporter 4: 177–192 (1987).Google Scholar
  32. 32.
    Lennox ES: Transduction of linked genetic characteris of the host by bacteriophage P1. Virology 1: 190–206 (1955).CrossRefPubMedGoogle Scholar
  33. 33.
    Lippincott JA, Beiderbeck R, Lippincott BB: Utilization of octopine and nopaline by Agrobacterium. J Bact 116: 378–383 (1973).PubMedGoogle Scholar
  34. 34.
    Loper JE, Kado CI: Host range conferred by the virulence-specifying plasmid of Agrobacterium tumefaciens. J Bact 139: 591–596 (1979).PubMedGoogle Scholar
  35. 35.
    Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1982).Google Scholar
  36. 36.
    Marsh JL, Erfle M, Wykes EJ: The pIC plasmid and phage vectors with versatile cloning sites for recombinant selection by insertional activation. Gene 32: 481–485 (1984).CrossRefPubMedGoogle Scholar
  37. 37.
    Nault LR, Gordon DT, Damsteegt VD, Iltis HH: Response of annual and perennial Teosintes (Zea) to six maize viruses. Plant Disease 66: 61–62 (1982).Google Scholar
  38. 38.
    Okker RJH, Spaink H, Hille J, vanBrussel TAN, Lugtenberg B, Schilperoort RA: Plant inducible virulence promoter of the Agrobacterium tumefaciens Ti plasmid. Nature (London) 312: 564–566 (1984).Google Scholar
  39. 39.
    Ooms G, Hooykaas PJJ, vanVeen RJM, vanBeelen P, Regensburg-Tuïnk TJG, Schilperoort RA: Octopine Ti-plasmid deletion mutants of Agrobacterium tumefaciens with emphasis on the right side of the T-region. Plasmid 7: 15–29 (1982).PubMedGoogle Scholar
  40. 40.
    Ooms G, Karp A, Burrel MM, Twell D, Roberts J: Genetic modification of potato development using Ri T-DNA. Theor Appl Genet 70: 440–446 (1985).Google Scholar
  41. 41.
    Otten L, DeGreve H, Leemans J, Hain R, Hooykaas P, Schell J: Restoration of virulence of vir region mutants of Agrobacterium tumefaciens strain B6S3 by coinfection with normal and mutant Agrobacterium strains. Mol Gen Genet 195: 159–163 (1984).CrossRefGoogle Scholar
  42. 42.
    Otten L, Piotrowiak G, Hooykaas P, Dubois H, Szegedi E, Schell J: Identification of an Agrobacterium tumefaciens pTiB6S3 vir region fragment that enhances the virulence of pTiC58. Mol Gen Genet 199: 189–193 (1985).Google Scholar
  43. 43.
    Skiaky D, Montoya AL, Chilton M-D: Fingerprints of Agrobacterium Ti plasmids. Plasmid 1: 238–253 (1978).PubMedGoogle Scholar
  44. 44.
    Shäfer W, Gore A, Kahl G: T-DNA integration and expression in a monocot crop plant after induction of Agrobacterium. Nature 327: 529–532 (1987).CrossRefGoogle Scholar
  45. 45.
    Sheikholeslam SN, Weeks DP: Acetosyringone promotes high efficiency transformation of Arabidopsis thaliana explants by Agrobacterium tumefaciens. Plant Mol Biol 8: 291–298 (1987).Google Scholar
  46. 46.
    Stanley J: The molecular biology of geminiviruses. Advances in Virus Research 30: 139–177 (1985).PubMedGoogle Scholar
  47. 47.
    Stanley J, Townsend R: Infectious mutants of cassava latent virus generated in vivo from intact recombinant DNA clones containing single copies of the genome. Nucleic Acids Res 14: 5981–5998 (1986).PubMedGoogle Scholar
  48. 48.
    Thomashow MF, Panagopoulos CG, Gordon MP, Nester EW: Host range of Agrobacterium tumefaciens is determined by the Ti-plasmid. Nature (London) 283: 794–796 (1980).Google Scholar
  49. 49.
    White FF, Nester EW: Hairy root plasmid encodes virulence traits in Agrobacterium rhizogenes. J Bact 141: 1134–1141 (1980).PubMedGoogle Scholar
  50. 50.
    White FF, Nester EW: Relationship of plasmids responsible for hairy root and crown gall tumorigenicity. J Bact 144: 710–720 (1980).PubMedGoogle Scholar
  51. 51.
    White FF, Taylor BH, Hoffman GA, Gordon MP, Nester EW: Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bact 164: 33–44 (1980).Google Scholar
  52. 52.
    Woolston CJ, Barker R, Gunn H, Boulton MI, Mullineaux PM: Agroinfection and nucleotide sequence of cloned wheat dwarf virus DNA. Plant Mol Biol 11: 35–44 (1988).Google Scholar
  53. 53.
    Yanofsky M, Lowe B, Montoya R, Rubin R, Krul W, Gordon M, Nester E. Molecular and genetic analysis of factors controlling host range in Agrobacterium tumefaciens. Mol Gen Genet 201: 237–246 (1985).Google Scholar
  54. 54.
    Yanofsky MF, Nester EW: Molecular characterization of a host-range determining locus from Agrobacterium tumefaciens. J Bact 168: 244–250 (1986).PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Margaret I. Boulton
    • 1
  • Wallace G. Buchholz
    • 2
  • Melanie S. Marks
    • 1
  • Peter G. Markham
    • 1
  • Jeffrey W. Davies
    • 1
  1. 1.Institute of Plant Science ResearchJohn Innes InstituteNorwichUK
  2. 2.Agrigenetics Advanced Science CompanyMadisonUSA

Personalised recommendations