Hydrobiologia

, Volume 334, Issue 1–3, pp 269–276 | Cite as

The first two cleavages in Tubifex involve distinct mechanisms to generate asymmetry in mitotic apparatus

  • Takashi Shimizu
Development and physiology

Abstract

We have investigated factors which determine inequality of the first two cleavages in Tubifex hattai. A mitotic spindle for the first cleavage, which is located at the center of the egg, possesses an aster at one pole, but not at the other pole. Inequality of the first cleavage is determined by the asymmetric organization of the spindle poles, rather than by the spindle position in the egg. A centrosome which appears as a dot stained with an anti-γ-tubulin antibody is found at one pole (at the center of the aster) of the spindle, but not at the other pole. This centrosome appears to be maternal in origin. In contrast to the first cleavage, the poles of the second cleavage spindle are not different from each other either in their ability to form asters or in γ-tubulin distribution. As a result of an interaction of one of the spindle poles with the cell cortex, however, an asymmetric spindle is formed in the cell CD, giving rise to unequal division in this cell. Thus, factors generating asymmetry in spindle organization are intrinsic to the mitotic spindle in the first cleavage, but not in the second cleavage.

Key words

Tubifex cleavage asymmetric mitotic spindles centrosomes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braidotti, P. & M. Ferraguti, 1982. Two sperm types in the spermatozeugmata of Tubifex tubifex (Annelida, Oligochaeta). J. Morph. 171: 123–136.Google Scholar
  2. Dan, K. & S. Ito, 1984. Studies on unequal cleavages in molluscs: I. Nuclear behavior and anchorage of a spindle pole to cortex as revealed by isolation technique. Dev. Growth & Differ. 26: 249–262.Google Scholar
  3. Freeman, G. & J. W. Lundelius, 1992. Evolutionary implications of the mode of D quadrant specification in coelomates with spiral cleavage. J. evol. Biol. 5: 205–247.Google Scholar
  4. Gathy, E., 1900. Contribution à l'étude du développement de l'oeuf et de la fécondation chez les annelides. Cellule 17: 7–62.Google Scholar
  5. Hirao, Y., 1965. Cocoon formation in Tubifex with its relation to the activity of the clitellar epithelium. J. Fac. Sci. Hokkaido Univ. Ser VI, Zool. 15: 625–632.Google Scholar
  6. Huber, W., 1946. Der normale Formwechsel des Mitoseapparates und der Zellrinde beim Ei von Tubifex. Rev. suisse Zool. 53: 468–474.Google Scholar
  7. Hyman, A. A., 1989. Centrosome movement in the early divisions of Caenorhabditis elegans, a cortical site determining centrosome position. J. Cell Biol. 109: 1185–1193.CrossRefPubMedGoogle Scholar
  8. Inase, M., 1960. On the double embryo of the aquatic worm Tubifex hattai. Sci. Rep. Tohoku Univ. Ser. IV, Biol. 26: 59–64.Google Scholar
  9. Ishii, R. & T. Shimizu, 1995. Unequal first cleavage in the Tubifex egg: involvement of a monastral mitotic apparatus. Dev. Growth & Differ. 37: 687–701.Google Scholar
  10. Lehmann, F. E., 1946. Mitoseablauf und Bewegungsvorgänge der Zellrinde bei zentrifugierten Keimen von Tubifex. Rev. suisse Zool. 53: 475–480.Google Scholar
  11. Lehmann, F. E., 1956. Plasmatische Eiorganisation und Entwicklungsleistung beim Keim vom Tubifex (Spiralia). Naturwissenschaften 43: 289–296.Google Scholar
  12. Mabuchi, I., 1986. Biochemical aspects of cytokinesis. Int. Rev. Cytol. 101: 175–213.PubMedGoogle Scholar
  13. McIntosh, J. R. & M. E. Porter, 1989. Enzymes for microtubule-dependent motility. J. biol. Chem. 264: 6001–6004.PubMedGoogle Scholar
  14. Penners, A., 1922. Die Furchung von Tubifex rivulorum Lam. Zool. Jb. Abt. Anat. Ontog. 43: 323–367.Google Scholar
  15. Penners, A., 1924. Experimentalle Untersuchungen zum Determinationsproblem an Keim vom Tubifex rivulorum Lam. I. Die Duplicitas cruciata and Organbildende Keimbezirke. Arch. Mikrosk. Abt. Entwick. Mechan. 101: 51–100.Google Scholar
  16. Rappaport, R., 1986. Establishment of the mechanism of cytokinesis in animal cells. Int. Rev. Cytol. 105: 245–281.PubMedGoogle Scholar
  17. Schroeder, T. E., 1987. Fourth cleavage of sea urchin blastomeres: microtubule patterns and myosin localization in equal and unequal cell divisions. Dev. Biol. 124: 9–22.PubMedGoogle Scholar
  18. Shimizu, T., 1982a. Development in the freshwater oligochaete Tubifex. In F. W. Harrison & R. R. Cowden (eds), Developmental Biology of Freshwater Invertebrates. A. R. Liss, New York: 283–316.Google Scholar
  19. Shimizu, T., 1982b. Ooplasmic segregation in the Tubifex egg: mode of pole plasm accumulation and possible involvement of microfilaments. Roux's Arch. dev. Biol. 191: 246–256.Google Scholar
  20. Shimizu, T., 1984. Dynamics of the actin microfilament system in the Tubifex egg during ooplasmic segregation. Dev. Biol. 106: 414–426.PubMedGoogle Scholar
  21. Shimizu, T., 1986. Bipolar segregation of mitochondria, actin networks, and surface in the Tubifex egg: role of cortical polarity. Dev. Biol. 116: 241–251.Google Scholar
  22. Shimizu, T., 1988. Localization of actin networks during early development of Tubifex embryos. Dev. Biol. 125: 321–331.PubMedGoogle Scholar
  23. Shimizu, T., 1989. Asymmetric segregation and polarized redistribution of pole plasm during early cleavages in the Tubifex embryo: role of actin networks and mitotic apparatus. Dev. Growth & Differ. 31: 283–297.Google Scholar
  24. Shimizu, T., 1993. Cleavage asynchrony in the Tubifex embryo: involvement of cytoplasmic and nucleus-associated factors. Dev. Biol. 157: 191–204.CrossRefPubMedGoogle Scholar
  25. Shimizu, T., 1994. The prevention of smaller blastomeres of early Tubifex embryos from entering mitosis by unreplicated DNA. Dev. Biol. 161: 274–284.CrossRefPubMedGoogle Scholar
  26. Shimizu, T., 1995. Lineage-specific alteration in cell cycle structure in early Tubifex embryos. Dev. Growth & Differ. 37: 263–272.Google Scholar
  27. Shimizu, T., 1996. Behaviour of centrosomes in early Tubifex embryos: asymmetric segregation and mitotic cycle-dependent duplication. Roux's Arch. dev. Biol. 205: 290–299.Google Scholar
  28. Sluder, G., 1992. Control of centrosome inheritance in echinoderm development. In V. I. Kalnins (ed), The Centrosome. Academic Press, San Diego: 235–259.Google Scholar
  29. Symes, K. & D. A. Weisblat, 1992. An investigation of the specification of unequal cleavages in leech embryos. Dev. Biol. 150: 203–218.PubMedGoogle Scholar
  30. Woker, H., 1944. Die Wirkung des Colchicins auf Furchungsmitosen und Entwicklungsleistungen des Tubifex-Eies. Rev. suisse Zool. 51: 109–170.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Takashi Shimizu
    • 1
  1. 1.Division of Biological Sciences, Graduate School of ScienceHokkaido UniversitySapporoJapan

Personalised recommendations