, Volume 316, Issue 2, pp 127–137 | Cite as

Resource limitation and intraspecific patterns of weight x length variation among spring detritivores

  • A. Basset
  • D. S. Glazier


This study examined the intraspecific variability of a phenotypic trait, the body weight/body length ratio, and its adequacy to provide unbiased information about patterns of resource availability among conspecific individuals. Individual body weight and length were measured for the amphipod Gammarus minus Say (and other detritivores) in samples from freshwater springs differing in expected resource availability, and from sites in which detritus abundance had been manipulated. Mean individual weight per length was lower: (a) in populations from low-richness than from high-richness detritivore guilds; (b) in populations with size-abundance distributions similar to that of the entire guild, rather than statistically different; (c) in population samples from outside than from inside the areas of detritus addition. Small-sized individuals (< 3 mm) showed the largest variation among both populations and population samples. Similar differences were qualitatively observed for the other common detritivores co-occurring with G. minus in some springs. These observed patterns were in agreement with the variation of resource availability expected among field conditions, supporting the relevance of weight per length as a measure of food limitation.

Key words

Resource limitation competition weight per length detritivores Gammarus minus springs Pennsylvania 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, N. H. & J. R. Sedell, 1979. Detritus processing by macroinvertebrates in stream ecosystems. Ann. Rev. Ent. 24: 351–377.CrossRefGoogle Scholar
  2. Andresen, H., J. P. Bakker, M. Brongersm, B. Heydemann & U. Irmler, 1990. Long-term changes of salt marsh communities by cattle grazing. Vegetatio 89: 137–148.Google Scholar
  3. Basset, A., 1990. Tassi respiratori individuali in una popolazione di Gammarus pulex (L.): ruolo di mole corporea e tasso di ingestione. Rendiconti Accademia Nazionale dei Lincei 9: 203–211.Google Scholar
  4. Basset, A., 1992. Aspetti funzionali dei rapporti di coesistenza tra specie in sistemi acquatici. Atti S. It. E. 15: 177–195.Google Scholar
  5. Basset, A., 1993. Resource-mediated effects of stream pollution on food absorption of Asellus aquaticus (L.) populations. Oecologia 93: 315–321.Google Scholar
  6. Basset, A., 1995. Body size, coexistence and guild structure: an approach to size related constraints to home-range use. Ecology 76(4): in press.Google Scholar
  7. Basset, A. & L. Rossi, 1990. Competitive trophic niche modifications in three species of detritivores. Funct. Ecol. 4: 685–694.Google Scholar
  8. Calow, P. & R. J. Berry (eds), 1989. Evolution, ecology & environmental stress. Biol. J. linn Soc. 37.Google Scholar
  9. Dobson, M. & A. G. Hildrew, 1992. A test of resource limitation among shredding detritivores in low order streams in southern England. J. anim. Ecol. 61: 69–77.Google Scholar
  10. Duncan, A., 1985. Body carbon in daphnids as an indicator of the food concentration available in the field. Arch. Hydrobiol. 21: 81–90.Google Scholar
  11. Durbin, E. G. & A. G. Durbin, 1978. Length and weight relationships of Acartia clausi from Narragansett Bay, R.I., Limnol. Oceanogr. 23: 958–969.Google Scholar
  12. Emlen, J. M., 1973. Ecology: an evolutionary approach. Addison-Wesley, London.Google Scholar
  13. Escribano, R. & I. A. McLaren, 1992. Influence of food and temperature on lengths and weights of two marine copepods. J. exp. mar. Biol. Ecol. 159: 77–88.CrossRefGoogle Scholar
  14. Fulton, T. W., 1904. The rate of growth of fishes. Fish. Bd scot. Annual Rep. 22: 141–241.Google Scholar
  15. Gee, J. H. R., 1988. Population dynamics and morphometrics of Gammarus pulex (L.): evidence of seasonal food limitation in a freshwater detritivore. Freshwat. Biol. 19: 333–343.Google Scholar
  16. Glasser, J. W., 1983. Variation in niche breadth with trophic position: on the disparity between expected and observed species packing. Am. nat. 122: 542–548.CrossRefGoogle Scholar
  17. Glazier, D. S., 1991. The fauna of North American temperate cold springs: patterns and hypotheses. Freshwat. Biol. 26: 527–542.Google Scholar
  18. Glazier, D. S. & J. L. Gooch, 1987. Macroinvertebrate assemblages in Pennsylvania (USA) springs. Hydrobiologia 150: 33–43.Google Scholar
  19. Glazier, D. S., M. T. Horne & M. E. Lehman, 1992. Abundance, body composition and reproductive output of Gammarus minus (Crustacea: Amphipoda) in ten cold springs differing in pH and ionic content. Freshwat. Biol. 28: 149–163.Google Scholar
  20. Gooch, J. L. & D. S. Glazier, 1991. Temporal and spatial patterns in mid-Appalachian springs. Mem. ent. Soc. Can. 155: 29–49.Google Scholar
  21. Hutchinson, G. E., 1959. Homage to Santa Rosalia, or why are there so many kinds of animals. Am. nat. 93: 145–159.CrossRefGoogle Scholar
  22. Kankaala, P. & S. Johansson, 1986. The influence of individual viriation on length-biomass regressions in three crustacean zooplankton species. J. Plankton Res. 8: 1027–1038.Google Scholar
  23. Klein Breteler, W. C. M., H. G. Fransz & S. R. Gonzales, 1982. Growth and development of four calanoid copepod species under experimental and natural conditions. Neth J. Sea Res. 16: 195–207.CrossRefGoogle Scholar
  24. Klein Breteler, W. C. M. & S. R. Gonzales, 1988. Influence of temperature and food concentration on body size, weight and lipid content of two Calanoid copepod species. Hydrobiologia 167/168 (Dev. Hydrobiol. 47): 201–210.Google Scholar
  25. La Cren, E. D., 1951. The length-weight relationship and seasonal cycle in gonadal weight and condition in the perch (Perca flavescens). J. anim. Ecol. 20: 201–219.Google Scholar
  26. Lomnicki, A., 1988. Population ecology of individuals. Princeton Univ. Press.Google Scholar
  27. Nisbet, R. M., W. S. C. Gurney, W. W. Murdoch, & E. McCauley, 1989. Structured population models: a tool for linking effects at individual and population level. Biol. J. linn Soc. 32: 79–99.Google Scholar
  28. Odum, E. P., 1985. Trends expected in stressed ecosystems. BioScience 35: 419–422.Google Scholar
  29. Omori, M., 1970. Variation of length, weight, respiratory rates and chemical composition of Calanus cristatus in relation to its food and feeding. In Marine Food Chains, J. H. Steele (ed.), Univ. California Press: 113–126.Google Scholar
  30. Paine, R. T., 1966. Food web complexity and species diversity. Am. nat. 100: 65–75.CrossRefGoogle Scholar
  31. Petersen, R. C. & K. W. Cummins, 1974. Leaf processing in a woodland stream. Freshwat. Biol. 4: 343–368.Google Scholar
  32. Rossi, L., 1985. Interactions between invertebrates and microfungi in freshwater ecosystems. Oikas 44: 175–184.Google Scholar
  33. Rossi, L., A. Basset & L. Nobile, 1983. A coadapted trophic niche in two species of Crustacea (Isopoda): Asellus aquaticus (L.) and Proasellus coxalis Dollfus. Evolution 37: 810–820.Google Scholar
  34. Rossi, L., A. Basset,, L. Picciafuoco & G. Massini, 1988. Processo decompositivo ed analisi eco-funzionale nelle reti trofiche. In: Progetto lago Albano, Univ. di Roma "La Sapienza" e Provincia di Roma (eds), 10: 1–104.Google Scholar
  35. Roughgarden, J., 1979. Theory of population genetics and evolutionary ecology: An introduction. Macmillan N.Y.Google Scholar
  36. Tessier, A. J. & C. E. Goulden, 1982. Estimating food limitation in cladoceran populations. Limnol. Oceanogr. 27: 707–717.Google Scholar
  37. Tessier, A. J., L. L. Henry, C. E. Goulden & M. W. Durand, 1983. Starvation in Daphnia: energy reserves and reproductive allocation. Limnol. Oceanogr. 28: 667–676.Google Scholar
  38. Threlkeld, S. T., 1976. Starvation and the size structure of zooplankton communities. Freshwat. Biol. 6: 489–496.Google Scholar
  39. Tolba, M. R. & D. M. Holdich, 1981. The effect of water quality on the size and fecundity of Asellus aquaticus. aquat. toxicol. 1: 101–112.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • A. Basset
    • 1
  • D. S. Glazier
    • 2
  1. 1.Dipartimento di Biologia Animale ed EcologiaUniversita' di CagliariCagliariItaly
  2. 2.Department of BiologyJuniata CollegeHuntingdonU.S.A.

Personalised recommendations