Advertisement

Hydrobiologia

, Volume 277, Issue 2, pp 121–134 | Cite as

Effects of river flow fluctuations on groundwater discharge through brook trout, Salvelinus fontinalis, spawning and incubation habitats

  • R. Allen Curry
  • Jim Gehrels
  • David L. G. Noakes
  • Robert Swainson
Article

Abstract

The effects of short-term fluctuations in river discharge simulating a hydroelectricity peaking regime on the hydrogeological environment of the brook trout's reproductive habitats were examined. Fluctuating river levels altered shallow (≤ 2.5 m) groundwater pathways, chemistry, and flow potentials within the river bed at spawning and incubation sites. Rising river levels introduced river water into the bank where various degrees of mixing with groundwater occurred. Subsequent recessions of river levels increased the potentials for groundwater flow, particular in an offshore direction. The character of the river water — groundwater interaction appeared to be related to the hydrogeological nature of the river channel and adjacent catchment which varied among sites. The observations suggested hydroelectricity peaking regimes have potential negative impacts on brook trout reproduction.

Key words

brook trout spawning incubation river bed groundwater regulated river hydroelectricity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bain, M. B., J. T. Finn & H. E. Booke, 1988. Streamflow regulation and fish community structure. Ecology 69: 382–392.Google Scholar
  2. Becker, C. D., D. A. Neitzel & C. S. Abernethy, 1983. Effects of dewatering on chinook salmon redds: Tolerance of four developmental phases to one-time dewatering. N. Am. J. Fish. Mgmt. 3: 373–382.CrossRefGoogle Scholar
  3. Brick, C., 1986. A model of groundwater response to reservoir management and the implications for kokanee salmon spawning, Flathead Lake, Montana. M. Sc. Thesis, University of Montana.Google Scholar
  4. Burt, D. W. & J. H. Mundie, 1986. Case histories of regulated stream flow and its effects on salmonid populations. Can. Tech. Rep. Fish. aquat. Sci. 1477: 98 pp.Google Scholar
  5. Curry, R. A., P. M. Powles, V. A. Liimatainen & J. M. Gunn, 1991. Emergence chronology of brook charr, Salvelinus fontinalis, alevins in an acidic stream. Envir. Biol. Fish. 31: 25–31.Google Scholar
  6. Elliott, J. M., 1989. Mechanisms responsible for population regulation in young migratory trout, Salmo trutta. I. The critical time for survival. J. anim. Ecol. 58: 987–1001.Google Scholar
  7. Fraser, J. M., 1982. An atypical brook charr (Salvelinus fontinalis) spawning area. Envir. Biol. Fish. 7: 385–388.Google Scholar
  8. Fraser, J. M., 1985. Shoal spawning of brook trout, Salvelinus fontinalis, in a Precambrian Shield lake. Nat. can. 112: 163–174.Google Scholar
  9. Freeze, R. A. & J. A. Cherry, 1979. Groundwater, New Jersey: Prentice-Hall Inc.Google Scholar
  10. Gilbert, N., 1989. Biometrical Interpretation. Making Sense of Statistics in Biology. Second Edition, New York: Oxford University Press.Google Scholar
  11. Godbout, L. & H. B. N. Hynes, 1982. The three dimensional distribution of the fauna in a single riffle in a stream in Ontario. Hydrobiologia 97: 87–96.Google Scholar
  12. Gunn, J. M., 1986. Behaviour and ecology of salmonid fishes exposed to episodic pH depressions. Envir. Biol. Fish. 17: 241–252.Google Scholar
  13. Hoar, W. S. & D. J. Randall (eds), 1969. Fish Physiology. Vol. 1, New York: Academic Press Inc.Google Scholar
  14. Hvorslev, M. J., 1951. Time lag and soil permeability in groundwater observations. U.S. Army Corps Engrs. Waterways Exp. Sta. Bull. 36. Vicksburg, VA.Google Scholar
  15. Lee, D. R. & J. A. Cherry, 1978. A field exercise on groundwater flow using seepage meters and mini-piezometers. J. Geol. Ed. 27: 6–10.Google Scholar
  16. Ontario Ministry of the Environment, 1988. Acid Precipitation in Ontario Study — Annual Statistics of Concentration and Deposition — Cumulative Precipitation Monitoring Network, 1983–1988.Google Scholar
  17. Pfannkuch, H. D. & T. C. Winter, 1984. Effect of anisotropy and groundwater system geometry on seepage through lakebeds. J. Hydrol. 75: 213–237.CrossRefGoogle Scholar
  18. Power, G., 1980. The brook charr, in E. K. Balon (ed.), Charrs, Salmonid Fishes of the Genus Salvelinus: Dr W. Junk Publishers, The Hague: 141–203.Google Scholar
  19. Reiser, D. W. & T. A. Wesche, 1977. Determination of physical and hydraulic preferences of brown and brook trout in the selection of spawning locations, U.S. Dept. Interior, Water Resources Series No. 64.Google Scholar
  20. Reiser, D. W. & R. G. White, 1983. Effects of complete redd dewatering on salmonid egg-hatching success and development of juveniles. Trans. am. Fish. Soc. 112: 532–540.CrossRefGoogle Scholar
  21. SAS Institute Inc., 1985. SAS/STAT User's Guide, Version 6, Fourth Edition. Cary, NC.Google Scholar
  22. Scott, W. B. & E. J. Crossman, 1979. Freshwater Fishes of Canada. Bulletin 184, Fisheries Research Board of Canada: Ottawa.Google Scholar
  23. Silver, S. J., C. E. Warren & P. Doudoroff, 1963. Dissolved oxygen requirements of developing steelhead trout and chinook salmon embryos at different water velocities. Trans. am. Fish. Soc. 92: 327–343.Google Scholar
  24. Smith, A. K., 1973. Development and application of spawning velocity and depth criteria for Oregon salmonids. Trans. am. Fish. Soc. 102: 312–316.CrossRefGoogle Scholar
  25. Snucins, E. J., R. A. Curry & J. M. Gunn, 1992. Embryo habitat and timing of alevin emergence of a lake-dwelling brook trout (Salvelinus fontinalis) population. Can. J. Zool. 70: 423–427.Google Scholar
  26. Sowden, T. K. & G. Power, 1985. Prediction of rainbow trout embryo survival in relation to groundwater seepage and particle size of spawning substrate. Trans. am. Fish. Soc. 114: 804–812.CrossRefGoogle Scholar
  27. Triska, F. J., V. C. Kennedy, R. J. Avanzino, G. W. Zellweger & K. E. Bencala, 1989. Retention and transport of nutrients in a third-order stream in northwestern California: hyporheic process. Ecology 70: 1873–1905.Google Scholar
  28. Vaux, W. G., 1968. Intragravel flow and interchange of water in a streambed. U.S. Fish Wildl. Serv., Fish. Bull. 66: 479–489.Google Scholar
  29. Vervier, P., J. Gilbert, P. Marmonier & M.-J. Dole-Olivier, 1992. A perspective on the permeability of the surface freshwatergroundwater ecotone. J. N. Am. Benthol. Soc. 11: 93–102.Google Scholar
  30. White, D. S., 1990. Biological relationships to convective flow patterns within stream beds. Hydrobiology 196: 149–158.Google Scholar
  31. Winter, T. C., 1974. Numerical simulation analysis of the interaction of lakes and groundwater. U.S.G.S., Geol. Surv. Prof. Paper 1001.Google Scholar
  32. Young, M. K., W. A. Hubert & T. A. Wesche, 1989. Substrate alteration by spawning brook trout in a southeastern Wyoming stream. Trans. am. Fish, Soc. 118: 379–385.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • R. Allen Curry
    • 1
  • Jim Gehrels
    • 2
  • David L. G. Noakes
    • 1
  • Robert Swainson
    • 3
  1. 1.Institute of Ichthyology, Zoology DepartmentUniversity of GuelphGuelphCanada
  2. 2.Ontario Ministry of the EnvironmentWater Resources UnitThunder BayCanada
  3. 3.Ontario Ministry of Natural ResourcesNipigonCanada

Personalised recommendations