, Volume 114, Issue 1, pp 9–12 | Cite as

Response of algae and zooplankton to C18 fatty acids of Chlamydomonas reinhardtii

  • James A. Spruell


Three C18 fatty acids were assayed for their activity against a number of algae and zooplankton. The three acids, lenolenic, lenoleic, and oleic, reduced the growth of Haematococcus lacustris, Synechococcus leopoliensis, and Botrydiopsis alpina by 50% of control growth in concentrations below 7 ppm. Calanoid and cyclopoid copepods in mixed cultures inoculated with lenolenic and lenoleic acid had LD50 values below 10 ppm. An increase in copepod mortality was observed with increases in cyclopoid density and decreased with increases in calanoid density. Eucyclops agilis inoculated with lenolenic acid had a LD50 value of 4 ppm.


algal inhibition copepod fatty acids allelopathy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allee, W. C., 1920. Animal aggregations. Anat. Rec. 17: 340.Google Scholar
  2. Allee, W. C., 1927. Studies in animal aggregations: Some physiological effects of aggregation in the brittle starfish, Ophioderma brevispina. J. Exp. Zool. 48: 475–495.CrossRefGoogle Scholar
  3. Allee, W. C., 1931. Animal Aggregations. University of Chicago Press, Chicago.Google Scholar
  4. Amonkar, S. V., 1969. Fresh water algae and their metabolites as a means of biological control of mosquitos. Ph.D. thesis. Univ. of Calif. Riverside.Google Scholar
  5. Bresslau, E., 1922. Die Ausscheidung entgiftender Schutzstoffe bei Ciliaten. Centralbl. f. Bakteriologie u. Parasitenkunde. I. Abteil., Bd. 89: 87–90.Google Scholar
  6. Confer, J. L., 1971. Intrazooplankton predation by Mesocyclops edax at natural prey densities. Limnol. Oceanogr. 16: 663–666.CrossRefGoogle Scholar
  7. Fowler, J. R., 1931. The relation of numbers of animals to survival in toxic concentrations of electrolytes. Physiol. Zool. 4(2): 214–245.CrossRefGoogle Scholar
  8. LaLonde, R. T., C. D. Morris, D. F. Wong, L. C. Gardner, D. J. Eckert, D. R. King & R. H. Zimmerman, 1979. Response of Aedes triseriatus larvae to fatty acids of Cladophora. J. Chem. Ecol. 5: 371–381.CrossRefGoogle Scholar
  9. McCracken, M. D., R. E. Middaugh & R. S. Middaugh, 1980. A chemical characterization of an algal inhibitor obtained from Chlamydomonas. Hydrobiologia 70: 271–276.CrossRefGoogle Scholar
  10. McGrattan, D. J., J. D. Sullivan & M. Ikawa, 1976. Inhibition of Chlorella(Cholorphycae) growth by fatty acids, using the paper disc method. J. Phycol. 12: 129–131.Google Scholar
  11. McQueen, D. J., 1969. Reduction of zooplankton standing stocks by predaceous Cyclops bicuspidatus thomasi in Marion Lake, British Columbia. J. Fish. Res. Bd. Can. 26: 1605–1618.CrossRefGoogle Scholar
  12. Nieman, C., 1954. Influence of trace amounts of fatty acids on the growth of microorganisms. Bact. Rev. 18: 147–163.PubMedGoogle Scholar
  13. Proctor, V. W. 1957. Studies of algal antibiosis using Hamatococcus and Chlamydomonas. Limnol. and Oceanog. 2: 126–139.CrossRefGoogle Scholar
  14. Puritch, G. S. 1975. The toxic effects of fatty acids and their salts on the balsam woolly aphid, Adeges piceae (Ratz.). Can. J. For. Res. 5: 515–522.CrossRefGoogle Scholar
  15. Scutt, J. E. 1964. Autoinhibitor production by Chlorella bulgaris. Am. J. Bot. 51: 581–584.CrossRefGoogle Scholar

Copyright information

© Dr W. Junk Publishers 1984

Authors and Affiliations

  • James A. Spruell
    • 1
  1. 1.Department of Botany and MicrobiologyUniversity of OklahomaNormanU.S.A.

Personalised recommendations