Plant Molecular Biology

, Volume 26, Issue 5, pp 1637–1650 | Cite as

Green circuits — The potential of plant specific ion channels

  • Rainer Hedrich
  • Dirk Becker


Plant Pathology Green Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adomeo G, Zeiger E: A cationic channel in the guard cell tonoplast of Allium cepa. Plant Physiol 105: 999–1006 (1994).PubMedGoogle Scholar
  2. 2.
    Alexandre J, Lassalles JP, Kado RT: Opening of Ca2+ channels in isolated red beet root vacuole membrane by inositol 1, 4, 5-trisphosphate. Nature 343: 567–570 (1990).CrossRefGoogle Scholar
  3. 3.
    Anderson JA, Huprikar SS, Kochian LV, Lucas WJ, Gaber RF: Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 89: 3736–3740 (1992).PubMedGoogle Scholar
  4. 4.
    Assman SM: Signal transduction in guard cells. Annu Rev Plant Physiol 9: 345–375 (1993).Google Scholar
  5. 5.
    Barbara J-G, Stoeckel H, Takeda K: Hyperpolarisation-activated inward chloride current in protoplasts from suspension cultured carrot cells. Protoplasma 180: 136–144 (1994).Google Scholar
  6. 6.
    Becker D, Zeilinger C, Lohse G, Depta H, Hedrich R: Identification and biochemical characterization of the plasma-membrane H+-ATPase in guard cells of Vicia faba L.. Planta 190: 44–50 (1993).CrossRefGoogle Scholar
  7. 7.
    Beilby MJ: Electrophysiology of giant algal cells. Meth Enzymol, 174: 403–443 (1989).Google Scholar
  8. 8.
    Bentrup F-W: Cell physiology and membrane transport. Progress in Botany 51: 70–79 (1989).Google Scholar
  9. 9.
    Bertl A, Slayman CL: Complex modulation of cation channels in the tonoplast and plasma membrane of saccharomyces cerevisiae: Single-channel studies. J Exp Biol 172: 271–287 (1992).PubMedGoogle Scholar
  10. 10.
    Bertl A, Blumwald E, Coronado R, Eisenberg R, Findlay G, Gradmann D, Hille B, Köhler K, Kolb H-A, MacRobbie E, Meissner G, Miller C, Neher E, Palade P, Pantoja O, Sanders D, Schroeder J, Slayman C, Spanswick R, Walker A, and Williams A: Electrical measurements on endomembranes. Science Letters 258: 873–874 (1992).Google Scholar
  11. 11.
    Bethke PC, Jones RL: Ca2+-Calmodulin modulaes ion channel activity in storage protein vacuoles of barley aleurone cells. Plant Cell 6: 277–285 (1994).CrossRefPubMedGoogle Scholar
  12. 12.
    Blatt MR: Ion channel gating in plants: Physiological implications and integration for stomatal function. J Membr Biol 124: 95–112 (1991).PubMedGoogle Scholar
  13. 13.
    Blatt MR: K+ Channels of stomatal guard cells. Characteristics of the inward rectifier and its control by pH. J Gen Physiol 99: 615–644 (1992).CrossRefPubMedGoogle Scholar
  14. 14.
    Bush DS, Hedrich R, Schoeder JI Jones RL: Channelmediated K+ flux in barley aleurone protoplasts. Planta 176: 368–377 (1988).Google Scholar
  15. 15.
    Cosgrove DJ, Hedrich R: Stretch-activated chloride, potassium, and calcium channels coexisting in the plasma membranes of guard cells of Vicia faba L.. Planta 186: 143–153 (1991).CrossRefPubMedGoogle Scholar
  16. 16.
    Dietrich P, Hedrich R: Conversion of fast and slow gating modes of GCAC1, a guard cell anion channel. Planta, in press (1994).Google Scholar
  17. 17.
    Elzenga JTM, Van Volkenburg E: Characterization of ion channels in the plasma membrane of epidermal cells of expanding pea (Pisum sativum arg) leaves. J Membr Biol 137, in press (1994).Google Scholar
  18. 18.
    Fairley K, Laver D, Walker NA: Whole-cell and single-channel currents across the plasmalemma of corn shoot suspension cells. J Membr Biol 121: 11–22 (1991).PubMedGoogle Scholar
  19. 19.
    Fairley-Grenot KA, Assmann SM: Evidence for G-protein regulation of inward K+ channel current in guard cells of fava bean. Plant Cell 3: 1037–1044 (1991).CrossRefPubMedGoogle Scholar
  20. 20.
    Fairley-Grenot KA, Assmann SM: Permeation of Ca2+ through K+ channels in the plasma membrane of Vicia faba guard cells. J Membr Biol 128: 103–113 (1992).CrossRefPubMedGoogle Scholar
  21. 21.
    Falke L, Edwards KL, Pickard BG, Misler SA: A stretch-activated anion channel in tobacco protoplasts. FEBS Lett 237: 141–144 (1988).CrossRefPubMedGoogle Scholar
  22. 22.
    Findlay GP, Tyerman SD, Garrill A, Skerrett M: Pump and K+ inward rectifiers in the plasmalemma of wheat root protoplasts. J Membr Biol 139: 103–116 (1994).CrossRefPubMedGoogle Scholar
  23. 23.
    Frommer W, Hummel S, Riesmeyer J: Expression cloning in yeast of a cDNA encoding a broad specifity amino acid permease from Arabidopsis thaliana. Proc Natl Acad Sci USA 90, 5944–5948 (1993).PubMedGoogle Scholar
  24. 24.
    Hedrich R, Neher R: Cytoplasmic calcium regulates voltage dependent ion channels in plant vacuoles. Nature 329: 833–835 (1987).CrossRefGoogle Scholar
  25. 25.
    Hedrich R, Kurkdjian A: Characterization of an anionpermeable channel from sugar beet vacuoles: Effect of inhibitors. EMBO 7: 3661–3666 (1988).Google Scholar
  26. 26.
    Hedrich R, Barbier-Brygoo H, Felle H, Flügge UI: General mechanisms for solute transport across the tonoplast of plant vacuoles: a patch-clamp survey of ion channels and proton pumps. Bot Acta 101: 7–13 (1988).Google Scholar
  27. 27.
    Hedrich R, Schroeder JI: The physiology of ion channels and electrogenic pumps in higher plant. Annu Rev Plant Physiol 40: 539–569 (1989).CrossRefGoogle Scholar
  28. 28.
    Hedrich R, Busch H, Raschke K: Ca2+ and nucleotide dependent regulation of voltage dependent anion channels in the plasma membrane of guard cells. EMBO J 9: 3889–3892 (1990).PubMedGoogle Scholar
  29. 29.
    Hedrich R, Marten I: Malate-induced feedback regulation of plasma membrane anion channels could provide a CO2 sensor to guard cells. EMBO J 12: 897–901 (1993).PubMedGoogle Scholar
  30. 30.
    Hedrich R, Marten I, Lohse G, Dietrich P, Winter H, Lohaus G, Heldt HW: Malate-sensitive anion channels enable guard cells to sense changes in the ambient CO2 concentration. Plant J 6: 741–748 (1994).CrossRefGoogle Scholar
  31. 31.
    Hedrich R, Moran O, Conti F, Busch H, Becker D, Gambale F, Dreyer I, Küch A, Neuwinger K, Palme K: voltage-dependence and high-affinity Cs+ block of a cloned plant K+ channel Eur J Biophys in press (1994).Google Scholar
  32. 32.
    Hedrich R: Technical approaches to studying specific properties of ion channels in plants, In: Neher E, Sakmann B (eds). Single Channel Recordings II. Plenum Press, NY, in press (1994).Google Scholar
  33. 33.
    Hedrich R: Voltage-dependent chloride channels in plant cells: Identification, characterization, and regulation of a guard cell anion channel. In: Guggino WB (ed) Current Topics in, Membranes 42, Chloride Channels, pp. 1–34. Academic Press, San Diego (1994).Google Scholar
  34. 34.
    Hille B: Ionic channels of excitable membranes. Sinauer Assoc., Sunderland, MA (1992).Google Scholar
  35. 35.
    Ho K, Nichols CG, Lederer WJ, Lytton J, Vassilev PM, Kanazirska MV, Herbert SC: Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 362: 31–38 (1993).CrossRefPubMedGoogle Scholar
  36. 36.
    Hodgkin HL, Huxley AF: A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117: 500–544 (1952).PubMedGoogle Scholar
  37. 37.
    Hoffmann A, Laubinger W, Dimroth P: Sodium-coupled ATP synthesis in Propionigenium modestum: is it a unique system? Biochim Biophys Acta 1018: 206–210 (1990).Google Scholar
  38. 38.
    Iijima T, Hagiwara S: Voltage-dependent K+ channels in protoplasts of trap-lobe cells Dionaea muscipula. J Membr Biol 100: 73–81 (1987).PubMedGoogle Scholar
  39. 39.
    Ilan N, Schwartz A, Moran N: External pH effects on the depolarization-activated K channels in guard cell protoplasts of Vicia faba. J Gen Physiol 103: 807–831 (1994).PubMedGoogle Scholar
  40. 40.
    Keller BU, Hedrich R, Raschke K: Voltage-dependent anion channels in the plasma membrane of guard cells. Nature 341: 450–453 (1989).Google Scholar
  41. 41.
    Ketchum KA, Shrier A, Poole RJ: Characterization of potassium dependent currents in protoplasts of corn suspension cells. Plant Physiol 89: 1184–1192 (1989).Google Scholar
  42. 42.
    Ketchum KA, Poole RJ: Cytosolic calcium regulates a potassium current in corn (Zea maize) protoplasts. J Membr Biol 119: 227–288 (1991).Google Scholar
  43. 43.
    Kolb HA, Marten I, Hedrich R: GCAC1 a guard cell anion channel with gating properties like the HH sodium channel. J Membr Biol in press (1994).Google Scholar
  44. 44.
    Kourie J, Goldsmith MHM: K+ channels are responsible for an inwardly rectifying current in the plasma membrane of mesophyll protoplasts of Avena sativa. Plant Physiol 98: 1087–1097 (1994).Google Scholar
  45. 45.
    Kubo Y, Baldwin TJ, Jan YN, Jan LY: Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362: 127–133 (1993).PubMedGoogle Scholar
  46. 46.
    Kwart M, Hirner B, Hummel S, Frommer WB: Differential expression of two related amino acid transporters with differing substrate specificity in Arabidopsis thaliana. Plant J 4: 993–1002 (1993).PubMedGoogle Scholar
  47. 47.
    Lew RR: Substrate regulation of single potassium and chloride ion channels in Arabidopsis plasma membrane. Plant Physiol 95: 642–647 (1991).Google Scholar
  48. 48.
    Linder B, Raschke K: A slow anion channel in guard cells, activating at large hyperpolarization, may be principal for stomatal closing. FEBS Lett 313: 27–31 (1994).Google Scholar
  49. 49.
    Lohse G, Hedrich R: Characterization of the plasma membrane H+-ATPase from Vicia faba guard cells. Modulation by extracellular factors and seasonal changes. Planta 188: 206–214 (1992).Google Scholar
  50. 50.
    Luan S, Lee W, Rusnack F, Assmann SM, Schreiber SL: Immunosuppressants implicate protein phsphatase regulation of K+ channels in guard cells. Proc Natl Acad Sci USA 90: 2202–2206 (1993).PubMedGoogle Scholar
  51. 51.
    Maathuis FJM, Prins HBA: Patch clamp studies on root cell vacuoles of a salt-tolerant and a salt-sensitive Plantago species. Plant Physiol 92: 23–28 (1991).Google Scholar
  52. 52.
    Maathuis FJM, Prins HBA: Inhibition of inward rectifying tonoplast channels by a vacuolar factor, Physiological and kinetic implications. J Membr Biol 122: 251–258 (1991).PubMedGoogle Scholar
  53. 53.
    Marten I, Lohse G, Hedrich R: Plant growth hormones control voltage-dependent activity of anion channels in plasma membrane of guard cells. Nature 353: 758–762 (1991).Google Scholar
  54. 54.
    Moran N, Ehrenstein G, Iwasa K, Mischke C, Bare C, Satter RL: Potassium channels in motor cells of Samanea saman. A patch-clamp study. Plant Physiol 88: 643–648 (1988).Google Scholar
  55. 55.
    Moran N, Fox D, Sutter RL: Interaction of the depolarization-activated K+ channel of Samanea saman with inorganic ions: A patch-clamp study. Plant Physiol 94: 424–431 (1990).Google Scholar
  56. 56.
    Müller-Röber B, Busch H, Ellenberg J, Becker D, Dietrich P, Provart N, Hedrich R, Willmitzer L: Cloning and electrophysiological characterisation of a voltage-dependent K+ channel predominantly expressed in potato guard cells. EMBO J, submitted (1994).Google Scholar
  57. 57.
    Nelson N, Taiz L: The evolution of H+-ATPases. Trends Biochem Sci 4: 113 (1989).Google Scholar
  58. 58.
    Ninnemann O, Jauniaux JC, Frommer WB: Identification of a high affinity ammonium transporter from plants. EMBO J 13: 3463–3471 (1994).Google Scholar
  59. 59.
    O'Rourke B, Ramza BM, Marban E: Oscillations of membrane current and excitability driven by metabolic oscillations in heart cells. Science 265: 962–966 (1994).PubMedGoogle Scholar
  60. 60.
    Pantoja O, Dainty J, Blumwald E: Cytoplasmic chloride regulates cation channels in the vacuolar membrane of plant cells. J Membr Biol 125: 219–229 (1992).PubMedGoogle Scholar
  61. 61.
    Pederson PL, Carafoli E: Ion motive ATPases. II Energy coupling and work output. Trends Biochem Sci 12 (5): 186–189 (1987).Google Scholar
  62. 62.
    Raschke K: Movements of stomata. In: Haupt W, Feinleib ME (eds) Encyclopedia of Plant Physiology, Bd. 7, Physiology of Movements. Springer Verlag, Berlin (1979).Google Scholar
  63. 63.
    Reifarth FW, Weiser T, Bentrum F-W: Voltage- and Ca2+-dependence of the K+ channel in the vacuolar membrane of Chenopodium rubrum L. suspension cells. Biochim Biophys Acta 192: 79–87 (1994).Google Scholar
  64. 64.
    Riesmeier JW, Willmitzer L, Frommer WB: Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J 11: 4705–4713 (1992).PubMedGoogle Scholar
  65. 65.
    Sauer N, Tanner W: Molecular biology of sugar transporters in plants. Bot Acta 106: 277–286 (1993).Google Scholar
  66. 66.
    Sauer N, Baier K, Gahrtz M, Stadler R, Stolz J, Truernit E: Sugar transport across the plasma membranes of higher plants. Plant Mol Biol 26: 1671–1679 (1994).PubMedGoogle Scholar
  67. 67.
    Schachtman DP, Tyerman SD, Terry BR: The K+/Na+ selectivity of a cation channel in the plasma membrane of root cells does not differ in salt-tolerant and salt-sensitive wheat species. Plant Physiol 97: 598–605 (1991).Google Scholar
  68. 68.
    Schachtmann DP, Schroeder JI, Lucas WJ, Anderson JA, Gaber RF: Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science 258: 1654–1658 (1992).PubMedGoogle Scholar
  69. 69.
    Schachtmann DP, Schroeder JI: Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plant. Nature 370: 655–658 (1994).CrossRefPubMedGoogle Scholar
  70. 70.
    Schauf CL, Wilson KJ: Effects of ABA on K+ channels in Vicia faba guard cell protoplasts. Biochem. Biophys Res Com 145: 284–290 (1987).PubMedGoogle Scholar
  71. 71.
    Schauf CL, Wilson KJ: Properties of single K+ and Cl- channels in Asclepias tuberosa protoplasts. Plant Physiol 85: 413–418 (1987).Google Scholar
  72. 72.
    Schönknecht G, Hedrich R, Junge W, Raschke K: A voltage-dependent chloride channel in the photosynthetic membrane of a higher plant. Nature 336: 589–592 (1988).CrossRefGoogle Scholar
  73. 73.
    Schroeder JI, Hedrich R, Ferandez JM: Potassium-selective single channels in guard cell protoplasts of Vicia faba. Nature 312: 361–362 (1984).Google Scholar
  74. 74.
    Schroeder JI, Raschke K, Neher E: Voltage-dependence of K+ channels in guard-cell protoplasts. Proc Natl Acad Sci USA 84: 4108–4112 (1987).Google Scholar
  75. 75.
    Schroeder JI: K+ transport properties of K+ channels in the plasma membrane of Vicia faba guard cells. J Gen Physiol 92: 667–683 (1988).CrossRefPubMedGoogle Scholar
  76. 76.
    Schroeder JI, Hagiwara S: Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells. Nature 338: 427–430 (1989).CrossRefGoogle Scholar
  77. 77.
    Schroeder JI, Hedrich R: Involvement of ion channels and active transport in osmoregulation and signalling of higher plant cells. Trends Biochem Sci 14: 187–192 (1989).CrossRefPubMedGoogle Scholar
  78. 78.
    Schroeder JI: Quantitative analysis of outward rectifying K+ currents in guard cell protoplasts from Vicia faba. J Membr Biol 107: 229–235 (1989).PubMedGoogle Scholar
  79. 79.
    Schroeder JI, Hagiwara S: Voltage-dependent activation of Ca2+-regulated anion channels and K+ uptake channels in Vicia faba guard cells. In: Leonard RT, Hepler PK (eds) Current Topics in Plant Physiology 4: Calcium in Plant Growth and Development, pp. 144–150. American Society of Plant Physiologists, Rockville, Maryland (1990).Google Scholar
  80. 80.
    Schroeder JI, Fang HH: Inward-rectifying K+ channels in guard cells provide a mechanism for low-affinity K+ uptake. Proc Natl Acad Sci USA 88: 11583–11587 (1991).PubMedGoogle Scholar
  81. 81.
    Schroeder JI, Keller B: Two types of anion channel currents in guard cells with distinct voltage regulation. Proc Natl Acad Sci USA 89: 5025–5029 (1992).PubMedGoogle Scholar
  82. 82.
    Schroeder JI, Schmidt C, Sheaffer J: Identification of high-affinity slow anion channels blockers and evidence for stomatal regulation by slow anion channels in guard cells. Plant Cell 5: 1831–1841 (1993).CrossRefPubMedGoogle Scholar
  83. 83.
    Schulz-Lessdorf B, Hedrich R: Protons and calcium modulate SV-type channels in the vacuolar-lysosomal compartment-Interaction with calmodulin antagonists. J Gen Physiol, submitted (1994).Google Scholar
  84. 84.
    Schulz-Lessdorf B, Dietrich P, Marten I, Lohse G, Busch H, Hedrich R: Coordination of plasma membrane ion channels during stomatal movement. In: Leigh RA (ed) The SEB Symposium 48, Membrane Transport in Plants and Fungi. The Company of Biologists Limited, Cambridge (1994).Google Scholar
  85. 85.
    Schulz-Lessdorf B, Hedrich R: pH and Ca2+ modulate the activity of ion channels in the vacuolar membrane of guard cells-possible interaction with calmodulin. Poster Abstract [377], Botanikertagung Berlin, FRG (1992).Google Scholar
  86. 86.
    Sentenac H, Bonneaud N, Minet M, Lacroute F, Salmon J-M, Gaymard F, Grignon C: Cloning and expression in yeast of a plant potassium ion transport system. Science 256: 663–665 (1992).PubMedGoogle Scholar
  87. 87.
    Shimazaki K, Iino M, Zeiger E: Blue light-dependent proton extrusion by guard cell-protoplasts of Vicia faba. Nature 319: 324–326 (1986).Google Scholar
  88. 88.
    Skerrett M, Tyermann SD: A channels that allows inwardly directed fluxes of anions in protoplasts derived from wheat roots. Planta 192: 295–305 (1994).CrossRefGoogle Scholar
  89. 89.
    Spalding EP, Goldsmith MHM: Activation of K+ channels in the plasma membrane of Arabidopsis by ATP produced photosynthetically. Plant Cell 5: 477–484 (1993).CrossRefPubMedGoogle Scholar
  90. 90.
    Spalding EP, Slayman CL, Goldsmith MHM, Gradmann D, Bertl A: Ion channels in Arabidopsis plasma membrane. Plant Physiol 99: 96–102 (1992).Google Scholar
  91. 91.
    Speer M, Kaiser WM: Ionic relations of symplastic and apoplastic space in leaves from Spinatia oleracea L. and Pisum sativum L. under salinity. Plant Physiol 97: 990–997 (1991).Google Scholar
  92. 92.
    Stoeckel H, Takeda K: Calcium-activated, voltage-dependent, non-selective cation currents in the endosperm plasma membrane from higher plants. Proc R Soc Lond B 237: 213–231 (1989).Google Scholar
  93. 93.
    Sussmann MR: Shaking Arabidopsis thaliana. Science 256: 619 (1992).Google Scholar
  94. 94.
    Sze H: H+-translocating ATPases. Advances using plasma membrane vesicles. Annu Rev Plant Physiol 36: 175–208 (1985).Google Scholar
  95. 95.
    Terry BR, Tyerman SD, Findlay GP: Ion channels in the plasma membrane of Amaranthus protoplasts: One cation and one anion channel dominate the conductance. J Membr Biol 121: 223–236 (1991).PubMedGoogle Scholar
  96. 96.
    Thiel G, Homan U, Gradmann D: Microscopic elements of electrical excitation in chara: Transient activity of Cl- channels in the plasma membrane. J Membr Biol 134: 53–66 (1993).CrossRefPubMedGoogle Scholar
  97. 97.
    Thiel G, McRobbie EAC, Blatt MR: Membrane transport in stomatal guard cells. Importance of voltage control. J Membr Biol 126: 1–18 (1992).CrossRefPubMedGoogle Scholar
  98. 98.
    Thuleau P, Ward JM, Ranjeva R, Schroeder JI: Voltage-dependent calcium-permeable channels in the plasma membrane of carrot suspension cells. EMBO J 13: 2970–2975 (1994).PubMedGoogle Scholar
  99. 99.
    Tsay Y-F, Schroeder JI, Feldmann KA, Crawford NM: The herbicide sensitivity gene CHL1 of Arabidopsis thaliana enodes a nitrate-inducible nitrate transporter. Cell 72: 705–713 (1993).CrossRefPubMedGoogle Scholar
  100. 100.
    Tyerman SD: Anion channels in plants. Annu Rev Plant Physiol Mol Biol 43: 351–373 (1992).CrossRefGoogle Scholar
  101. 101.
    Vogelzang SA, Prins HBA: Patch clamp analysis of the dominant plasma membrane K+ channel in root cell protoplasts of Plantago media L. Its significance for the P and K state. J Membr Biol 141: 113–122 (1994).CrossRefPubMedGoogle Scholar
  102. 102.
    Ward JM, Schroeder JI: Ca-activated K+ channels and Ca-induced Ca release by slow vacuolar ion channels in guard cells vacuoles implicated in the control of stomatal closure. Plant Cell 6: 669–683 (1994).CrossRefPubMedGoogle Scholar
  103. 103.
    Wegner LH, Raschke K: Ion channels in the xylem parenchyma of barley roots. Plant Physiol 105: 799–813 (1994).PubMedGoogle Scholar
  104. 104.
    Wegner LH, DeBoer AH, Raschke K: Properties of the K+ inward rectifier in the plasma membrane of xylem parenchyma cells from Barley roots: Effects of TEA+, Ca2+, Ba2+, and La3+. J Membr Biol, in press (1994).Google Scholar
  105. 105.
    Weiser T, Bentrup F-W: (+)-Tubocurarine is a potent inhibitor of cation channels in the vacuolar membrane of Chenopodium rubrum L. FEBS Lett 277: 220–222 (1990).CrossRefPubMedGoogle Scholar
  106. 106.
    Weiser T, Bentrup F-W: Pharmacology of the SV channel in the vacuolar membrane of Chenopodium rubrum suspension cells. J Membr Biol 136: 43–54 (1993).CrossRefPubMedGoogle Scholar
  107. 107.
    Weiser T, Blum W, Bentrup F-W: Calmodulin regulates the Ca2+-dependent slow-vayacuolar ion channel in the tonoplast of Chenopodium rubrum suspension cells. Planta 185: 440–442 (1991).CrossRefGoogle Scholar
  108. 108.
    Zimmermann S, Thomine S, Guern J, Barbier-Brygoo H: An anion current at the plasmamembrane of tobacco protoplast shows ATP-dependent voltage regulation and is modulated by auxin. Plant J 6: 707–716 (1994).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Rainer Hedrich
    • 1
  • Dirk Becker
    • 1
  1. 1.Institut für BiophysikHannoverGermany

Personalised recommendations