Plant Molecular Biology

, Volume 26, Issue 5, pp 1239–1270 | Cite as

Transmembrane signalling in eukaryotes: a comparison between higher and lower eukaryotes

  • Lyndsay Drayer
  • Peter J. M. van Haastert
Article

Key words

eukaryotes cell surface receptors second messengers transmembrane signal transduction (pathway) 

Abbreviations

C

catalytic subunit PKA

EGF

epidermal growth factor

FGF

fibroblast growth factor

GRK

G-protein coupled receptor kinase

InsP3

inositol 1,4,5-trisphosphate

LAR

leucocyte common antigen-related

LCA

leucocyte common antigen

MAP kinase

mitogen-activated protein kinase

PKC

phosphodiesterase

PDGF

platelet-derived growth factor

PKA

cAMP-dependent protein kinase

PKC

protein kinase C

PKG

cGMP-dependent protein kinase

PLA2

phospholipase A2

PLC

phospholipase C

PLD

phospholipase D

PtdInsP2

phosphatidylinositol 4,5-bisphosphate

PTP

protein tyrosine phosphatase

R

regulatory subunit PKA

SH domain

src homology domain

TCR

T cell receptor

TPA

12-O-tetradecanoylphorbol-13-acetate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe K, Kusakabe Y, Tanemura K, Emori Y, Arai S: Primary structure and cell-type specific expression of a gustatory G protein-coupled receptor related to olfactory receptors. J Biol Chem 268: 12033–12039 (1993).PubMedGoogle Scholar
  2. 2.
    Ahn NG, Seger R, Bratlien RL, Diltz CD, Tonks NK, Krebs EG: Multiple components in an epidermal growth factor-stimulated protein kinase cascade—in vitro activation of a myelin basic protein/microtubule-associated protein 2 kinase. J Biol Chem 266: 4220–4227 (1991).PubMedGoogle Scholar
  3. 3.
    Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD: Molecular Biology of the Cell, pp. 681–726. Garland Publishing, New York/London (1989).Google Scholar
  4. 4.
    Anderson D, Koch CA, Grey L, Ellis C, Moran MF, Pawson T: Binding of SH2 domains of phospholipase Cγ1, GAP, and Src to activated growth factor receptors. Science 250: 979–982 (1990).PubMedGoogle Scholar
  5. 5.
    Anjard C, Pinaud S, Kay RR, Reymond CD: Over-expression of DdPK2 protein kinase causes rapid development and affects the intracellular cAMP pathway of Dictyostelium discoideum. Development 115: 785–790 (1992).PubMedGoogle Scholar
  6. 6.
    Anjard C, Etchebehere L, Pinaud S, Veron M, Reymond CD: An unusual catalytic subunit for the cAMP-dependent protein kinase of Dictyostelium discoideum. Biochemistry 32: 9532–9538 (1993).PubMedGoogle Scholar
  7. 7.
    Aroian RV, Koga M, Mendel JE, Ohshima Y, Sternberg PW: The let-23 gene necessary for Caenorhabditis elegans vulval induction encodes a tyrosine kinase of the EGF receptor subfamily. Nature 348: 693–699 (1990).CrossRefPubMedGoogle Scholar
  8. 8.
    Asaoka Y, Oka M, Yoshida K, Nishizuka Y: Metabolic rate of membrane-permeant diacylglycerol and its relation to human resting T-lymphocyte activation. Proc Natl Acad Sci USA 88: 8681–8685 (1991).PubMedGoogle Scholar
  9. 9.
    Asaoka Y, Nakamura S, Yoshida K, Nishizuka Y: Protein kinase C, calcium and phospholipid degradation. Trends Biochem Sci 17: 414–417 (1992).CrossRefPubMedGoogle Scholar
  10. 10.
    Atkinson RA, Saudek V, Huggins JP, Pelton JT: 1H NMR and circular dichroism studies of the N-terminal domain of cyclic GMP dependent protein kinase: a leucine/isoleucine zipper. Biochemistry 30: 9387–9395 (1991).PubMedGoogle Scholar
  11. 11.
    Bakalyar HA, Reed RR: Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science 250: 1403–1405 (1990).PubMedGoogle Scholar
  12. 12.
    Barnea G, Grumet M, Sap J, Margolis RU, Schlessinger J: Close similarity between receptor-linked tyrosine phosphatase and rat brain proteoglycan. Cell 76: 205 (1993).CrossRefGoogle Scholar
  13. 13.
    Bar-Sagi D, Rotin D, Batzer A, Mandiyan V, Schlessinger J: SH3 domains direct cellular localization of signalling molecules. Cell 74: 83–91 (1993).CrossRefPubMedGoogle Scholar
  14. 14.
    Beebe SJ, Øyen O, Sandberg M, Frøysa A, Hansson V, Jahnsen T: Molecular cloning of a tissue-specific protein kinase (Cy) from human testis—representing a third isoform for the catalytic subunit of cAMP-dependent protein kinase. Mol Endocrinol 4: 465–474 (1990).PubMedGoogle Scholar
  15. 15.
    Bennet CF, Balcarek JM, Varrichio A, Crooke ST: Molecular cloning and complete amino-acid sequence of form-I phosphoinositide-specific phospholipase C. Nature 334: 268–270 (1988).CrossRefPubMedGoogle Scholar
  16. 16.
    Berchtold H, Reshetnikova L, Reiser COA, Schirmer NK, Sprinzi M, Hilgenfeld R: Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature 365: 126–132 (1993).CrossRefPubMedGoogle Scholar
  17. 17.
    Bernstein G, Blank JL, Smrcka AV, Higashijima T, Sternweis PC, Exton JH, Ross EM: Reconstitution of agonist-stimulated phosphatidylinositol 4,5-bisphosphate hydrolysis using purified m1 muscarinic receptor, Gq/11, and phospholipase Cβ1. J Biol Chem 267: 8081–8088 (1992).PubMedGoogle Scholar
  18. 18.
    Bernstein G, Blank JL, Jhon DK, Exton JH, Rhee SG, Ross EM: Phospholipase Cβ1 is a GTPase-activating protein for Gq/11, its physiologic regulator. Cell 70: 411–418 (1992).CrossRefPubMedGoogle Scholar
  19. 19.
    Berridge MJ, Irvine RF: Inositol phosphates and cell signalling. Nature 341: 197–205 (1989).CrossRefPubMedGoogle Scholar
  20. 20.
    Berridge MJ: Inositol trisphosphate and calcium signalling. Nature 361: 315–325 (1993).CrossRefPubMedGoogle Scholar
  21. 21.
    Birnbaumer L: Receptor-to-effector signalling through G proteins: roles for βγ dimers as well as α subunits. Cell 71: 1069–1072 (1992).PubMedGoogle Scholar
  22. 22.
    Blank JL, Ross AH, Exton JH: Purification and characterization of two G-proteins that activate the β1 isozyme of phosphonositide-specific phospholipase C. J Biol Chem 266: 18206–18216 (1991).PubMedGoogle Scholar
  23. 23.
    Bloomquist BT, Shortridge RD, Schneuwly S, Perdew M, Montell C, Steller H, Rubin G, Pak WL: Isolation of a putative phospholipase C gene of Drosophila, norpA, and its role in phototransduction. Cell 54: 723–733 (1988).PubMedGoogle Scholar
  24. 24.
    Boguski MS, McCormick F: Proteins regulating Ras and its relatives. Nature 366: 643–654 (1993).CrossRefPubMedGoogle Scholar
  25. 25.
    Boman AL, Taylor TC, Melancon P, Wilson KL: A role for ADP-ribosylation factor in nuclear vesicle dynamics. Nature 358: 512–51 (1992).CrossRefPubMedGoogle Scholar
  26. 26.
    Bonfini L, Karlovich CA, Dasgupta C, Banerjee U: The Son of sevenless gene product: a putative activator of Ras. Science 25: 603–606 (1992).Google Scholar
  27. 27.
    Boulton TG, Nye SH, Robbins DJ, Ip NY, Radziejewska E, Morgenbesser SD, DePinho RA, Panayotatos N, Cobb MH, Yancopoulos GD: ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65: 663–675 (1991).CrossRefPubMedGoogle Scholar
  28. 28.
    Bourne HR, Sanders DA, McCormick F: The GTPase superfamily: conserved structure and molecular mechanism. Nature 349: 117–127 (1991).CrossRefPubMedGoogle Scholar
  29. 29.
    Broek D, Toda T, Michaeli T, Levin L, Birchmeier C, Zoller M, Powers S, Wigler M: The Saccharomyces cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway. Cell 48: 789–799 (1987).CrossRefPubMedGoogle Scholar
  30. 30.
    Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J, Hebert SC: Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature 366: 575–580 (1993).CrossRefPubMedGoogle Scholar
  31. 31.
    Brown HA, Gutowski S, Moomaw CR, Slaughter C, Sternweis PC: ADP-ribosylation factor, a small GTP-dependent regulatory protein, stimulates phospholipase D activity. Cell 75: 1137–1144 (1993).CrossRefPubMedGoogle Scholar
  32. 32.
    Buck L, Axel R: A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65: 175–187 (1991).CrossRefPubMedGoogle Scholar
  33. 33.
    Burkholder AC, Hartwell LH: The yeast α-factor receptor; structural properties deduced from the sequence of the STE2 gene. Nucl Acids Res 13: 8463–8475 (1985).PubMedGoogle Scholar
  34. 34.
    Bürki E, Anjard C, Scholder JC, Reymond CD: Isolation of two genes encoding putative protein kinases regulated during Dictyostelium discoideum development. Gene 102: 57–65 (1991).CrossRefPubMedGoogle Scholar
  35. 35.
    Camonis JH, Kakeline M, Bernard G, Garreau H, Boy-Marcotte E, Jacquet M: Characterization, cloning and sequence analysis of the CDC25 gene which controls the cyclic AMP level of Saccharomyces cerevisiae. EMBO J 5: 375–380 (1986).PubMedGoogle Scholar
  36. 36.
    Camps M, Hou C, Sidiropoulos D, Stock JB, Jakobs KH, Gierschik P: Stimulation of phospholipase C by guanine-nucleotide-binding protein βγ subunits. Eur J Biochem 206: 821–831 (1992).PubMedGoogle Scholar
  37. 37.
    Cannon JF, Tatchell K: Characterization of Saccharomyces cerevisiae genes encoding subunits of cyclic AMP-dependent protein kinase. Mol Cell Biol 7: 2653–2663 (1987).PubMedGoogle Scholar
  38. 38.
    Cantley LC, Auger KR, Carpenter C, Duckworth B, Graziani A, Kapeller R, Soltoff S: Oncogenes and signal transduction. Cell 64: 281–302 (1991).PubMedGoogle Scholar
  39. 39.
    Carozzi A, Camps M, Gierschik P, Parker PJ: Activation of phosphatidylinositol lipid-specific phospholipase C β3 by G-protein βγ subunits. FEBS Lett 315: 340–342 (1993).PubMedGoogle Scholar
  40. 40.
    Chang MS, Lowe DG, Lewis M, Hellmiss R, Chen E, Goeddel DV: Differential activation by atrial and brain natriuretic peptides of two different receptor guanylate cyclases. Nature 341: 68–72 (1989).PubMedGoogle Scholar
  41. 41.
    Charbonneau H, Tonks NK, Walsh KA, Fischer EH: The leukocyte common antigen (CD45): a putative receptor-linked protein tyrosine phosphatase. Proc Natl Acad Sci USA 85: 7182–7186 (1988).PubMedGoogle Scholar
  42. 42.
    Charbonneau H, Tonks NK, Kumar S, Diltz CD, Harrylock M, Cool DE, Kregs EG, Fischer EH, Walsh KA: Human placenta protein-tyrosine-phosphatase: amino acid sequence and relationship to a family of receptor-like proteins. Proc Natl Acad Sci USA 86: 5252–5256 (1989).PubMedGoogle Scholar
  43. 43.
    Chardin P, Camonis J, Gale WL, VanAelst L, Schlessinger J, Wigler MH, Bar-Sagi D: Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2. Science 260: 1338–1343 (1993).PubMedGoogle Scholar
  44. 44.
    Chinkers M, Garbers DL: The protein kinase domain of the ANP receptor is required for signalling. Science 245: 1392–1394 (1989).PubMedGoogle Scholar
  45. 45.
    Chinkers M, Garbers DL, Chang MS, Lowe DC, Chin H, Goeddel DV, Schulz S: A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature 338: 78–83 (1989).PubMedGoogle Scholar
  46. 46.
    Chinkers M, Garbers DL: Signal transduction by guanylyl cyclases. Annu Rev Biochem 60: 553–575 (1991).PubMedGoogle Scholar
  47. 47.
    Choi EJ, Xia Z, Storm DR: Stimulation of the type III olfactory adenylyl cyclase by calcium and calmodulin. Biochemistry 31: 6492–6498 (1992).PubMedGoogle Scholar
  48. 48.
    Choi EJ, Xia Z, Villacres EC, Storm DR: The regulatory diversity of the mammalian adenylyl cyclases. Curr Opin Cell Biol 5: 269–273 (1993).PubMedGoogle Scholar
  49. 49.
    Cifuentes ME, Honkanen L, Rebecchi MJ: Proteolytic fragments of phosphoinositide-specific phospholipase Cδ1-catalytic and membrane binding properties. J Biol Chem 268: 11586–11593 (1993).PubMedGoogle Scholar
  50. 50.
    Clark JD, Lin LL, Kriz RW, Ramesha CS, Sultzman LA, Lin AY, Milona N, Knopf JL: A novel arachidonic acid-selective cytosolic PLA2 contains a Ca2+-dependent translocation domain with homology to PKC and GAP. Cell 65: 1043–1051 (1991).PubMedGoogle Scholar
  51. 51.
    Clark SG, Stern MJ, Horvitz HR: C. elegans cell-signalling gene sem-5 encodes a protein with SH2 and SH3 domains. Nature 356: 340–344 (1992).PubMedGoogle Scholar
  52. 52.
    Cockroft S: G-protein-regulated phospholipases C, D and A2-mediated signalling in neutrophils. Biochim Biophys Acta 1113: 135–160 (1992).PubMedGoogle Scholar
  53. 53.
    Cockroft S, Thomas GMH: Inositol-lipid-specific phospholipase C isoenzymes and their differential regulation by receptors. Biochem J 288: 1–14 (1992).PubMedGoogle Scholar
  54. 54.
    Cockroft S, Thomas GMH, Fensome A, Geny B, Cunningham E, Gout I, Hiles I, Totty NF, Truong O, Hsuan JJ: Phospholipase D: a downstream effector of ARF in granulocytes. Science 263: 523–526 (1994).PubMedGoogle Scholar
  55. 55.
    Conklin BR, Bourne HR: Structural elements of Galpha subunits that interact with G protein βγ, receptors and effectors. Cell 73: 631–641 (1993).CrossRefPubMedGoogle Scholar
  56. 56.
    Crews CM, Alessandrini A, Erikson RL: The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science 258: 478–480 (1992).PubMedGoogle Scholar
  57. 57.
    DeFeo-Jones D, Scolnick EM, Koller R, Dhar R: Ras-related gene sequences identified and isolated from Saccharomyces cerevisiae. Nature 306: 707–709 (1983).PubMedGoogle Scholar
  58. 58.
    DeGunzburg J, Veron M: A cAMP-dependent protein kinase is present in differentiating Dictyostelium discoideum cells. EMBO J 1: 1063–1068 (1982).Google Scholar
  59. 59.
    DeGunzburg J, Part D, Guiso N, Veron M: An unusual adenosine 3′5′-phosphate dependent protein kinase from Dictyostelium discoideum. Biochemistry 23: 3805–3812 (1984).Google Scholar
  60. 60.
    Dekker LV, Parker PJ: Protein kinase C—a question of specificity. Trends Biochem Sci 19: 73–77 (1994).CrossRefPubMedGoogle Scholar
  61. 61.
    Dent P, Haser W, Haystead TAJ, Vincent LA, Robers TM, Sturgill TW: Activation of mitogen-activated protein kinase kinase by v-Raf in NIH 3T3 cells and in vitro. Science 257: 1404–1407 (1992).PubMedGoogle Scholar
  62. 62.
    Desai DM, Sap J, Schlessinger J, Weiss A: Ligandmediated negative regulation of a chimeric transmembrane receptor tyrosine phosphatase. Cell 73: 541–554 (1993).CrossRefPubMedGoogle Scholar
  63. 63.
    Devreotes P: Dictyostelium discoideum: a model system for cell-cell interactions and development. Science 245: 1054–1058 (1989).PubMedGoogle Scholar
  64. 64.
    deWit RJW, Arents JC, vanDriel R: Ligand binding properties of the cytoplasmic cAMP-binding protein of Dictyostelium discoideum. FEBS Lett 145: 150–154 (1982).CrossRefGoogle Scholar
  65. 65.
    Dhallan RS, Yau K, Schrader KA, Reed RR: Primary structure and functional expression of a cyclic nucleotide-activated channel from olfactory neurons. Nature 347: 184–187 (1990).CrossRefPubMedGoogle Scholar
  66. 66.
    Dietzel C, Kurjan J: The yeast SCG1 gene: a Gα-like protein implicated in the a and α-factor response pathway. Cell 50: 1001–1010 (1987).PubMedGoogle Scholar
  67. 67.
    Divecha N, Banfić H, Irvine RF: The polyphosphoinositide cycle exists in the nuclei of Swiss 3T3 cells under the control of a receptor (for IGF-1) in the plasma membrane, and stimulation of the cycle increases nuclear diacylglycerol and apparently induces translocation of protein kinase C to the nucleus. EMBO J 10: 3207–3214 (1991).PubMedGoogle Scholar
  68. 68.
    Divecha N, Banfic H, Irvine RF: Inositides and the nucleus and inositides in the nucleus. Cell 74: 405–407 (1993).PubMedGoogle Scholar
  69. 69.
    Divecha N, Rhee SG, Letcher AJ, Irvine RF: Phosphoinositide signalling enzymes in rat liver nuclei: phosphoinositidase C isoform β1 is specifically, but not predominantly, located in the nucleus. Biochem J 289: 617–620 (1993).PubMedGoogle Scholar
  70. 70.
    Dizhoor AM, Ray S, Kumar S, Niemi G, Spencer M, Brolley D, Walsh KA, Philipov PP, Hurley JB, Stryer L: Recoverin: a calcium sensitive activator of retinal rod guanylate cyclase. Science 251: 915–918 (1991).PubMedGoogle Scholar
  71. 71.
    Drayer AL, vanHaastert PJM. Molecular cloning and expression of a phosphoinositide-specific phospholipase C of Dictyostelium discoideum. J Biol Chem 267: 18387–18392 (1992).PubMedGoogle Scholar
  72. 72.
    Drayer AL, van derKaay J, Mayr GW, vanHaastert PJM: Role of phospholipase C in Dictyostelium: formation of inositol 1,4,5-trisphosphate and normal development in cells lacking phospholipase C activity. EMBO J 13: 1601–1609 (1994).PubMedGoogle Scholar
  73. 73.
    Emori Y, Homma Y, Sorimachi H, Kawasaki H, Nakanisho O, Suzuki K, Takenawa TA: A second type of rat phosphoinositide-specific phospholipase C containing a src-related sequence not essential for phosphoinositide-hydrolyzing activity. J Biol Chem 264: 21885–21890 (1989).PubMedGoogle Scholar
  74. 74.
    Errede B, Levin DE: A conserved kinase cascade for MAP kinase activation in yeast. Curr Opin Cell Biol 5: 254–260 (1993).PubMedGoogle Scholar
  75. 75.
    Errede B, Gartner A, Zhou Z, Nasmyth K, Ammerer G: Map kinase-related FUS3 from Saccharomyces cerevisiae is activated by Ste7 in vitro. Nature 362: 261–267 (1993).CrossRefPubMedGoogle Scholar
  76. 76.
    Evans RM: The steroid and thyroid hormone receptor superfamily. Science 240: 889–895 (1988).PubMedGoogle Scholar
  77. 106.
    Hall A, Ras-related proteins. Curr Opin Cell Biol 5: 265–268 (1993).PubMedGoogle Scholar
  78. 107.
    Hanks SK, Quinn AM, Hunter T: The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241: 42–51 (1988).PubMedGoogle Scholar
  79. 108.
    Harteneck C, Koesling D, Söling A, Schultz G, Böhme E: Expression of soluble guanylyl cyclase—catalytic activity requires two enzyme subunits. FEBS Lett 292: 221–223 (1990).CrossRefGoogle Scholar
  80. 109.
    Harteneck C, Wedel B, Koesling D, Malkewitz J, Böhme E, Schultz G: Molecular cloning and expression of a new α-subunit of soluble guanylyl cyclase—interchangeability of the α-subunits of the enzyme. FEBS Lett 292: 217–222 (1991).CrossRefPubMedGoogle Scholar
  81. 110.
    Hattori S, Fukuda M, Yamashita T, Nakamura S, Gotoh Y, Nishida E: Activation of mitogen-activated protein kinase and its activator by ras in intact cells and in a cell-free system. J Biol Chem 267: 20346–20351 (1992).PubMedGoogle Scholar
  82. 111.
    Heldin CH, Ernlund A, Rorsman C, Rönnstrand L: Dimerization of the B-type platelet-derived growth factor receptors occurs after ligand binding and is closely associated with receptor kinase activation. J Biol Chem 264: 8905–8912 (1989).PubMedGoogle Scholar
  83. 112.
    Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH: Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 213: 899–929 (1990).PubMedGoogle Scholar
  84. 113.
    Hepler JR, Gilman AG. G proteins. Trends Biochem Sci 17: 383–387 (1992).CrossRefPubMedGoogle Scholar
  85. 114.
    Hill TD, Dean NM, Mordan LJ, Lau AF, Kanemitsu MY, Boynton AL. PDGF-induced activation of phospholipase C is not required for induction of DNA synthesis. Science 248: 1660–1663 (1990).PubMedGoogle Scholar
  86. 115.
    Hocevar BA, Fields AP: Selective translocation of βII-protein kinase C to the nucleus of human promyelocytic (HL60) leukemia cells. J Biol Chem 266: 28–33 (1991).PubMedGoogle Scholar
  87. 116.
    Hofmann F, Dostmann W, Keilbach A, Landgraf W, Huth P: Structure and physiological role of cGMP-dependent protein kinase. Biochim Biophys Acta 1135: 51–60 (1992).CrossRefPubMedGoogle Scholar
  88. 117.
    House C, Kemp B: Protein kinase C contains a pseudosubstrate prototope in its regulatory domain. Science 238: 1726–1728 (1987).PubMedGoogle Scholar
  89. 118.
    Howard PK, Sefton BM, Firtel RA: Analysis of a spatially regulated phosphotyrosine phosphatase identifies tyrosine phosphorylation as a key regulatory pathway in Dictyostelium. Cell 71: 637–647 (1992).CrossRefPubMedGoogle Scholar
  90. 119.
    Hughes DA, Yamamoto M: Ras and signal transduction during sexual differentiation in the fission yeast Schizosaccharomyces pombe. In: Kurjan J, Taylor BL (eds) Signal Transduction: Prokaryotic and Simple Eukaryotic Systems, pp. 123–146. Academic Press, New York (1993).Google Scholar
  91. 120.
    Hunter T: A thousand and one protein kinases. Cell 50: 823–829 (1987).CrossRefPubMedGoogle Scholar
  92. 121.
    Hurley JB, Dizhoor AM, Ray S, Stryer L: Recoverin's role: conclusion withdrawn. Science 260: 740 (1993).PubMedGoogle Scholar
  93. 122.
    Hurley JB: G proteins of Drosophila melanogaster. In: Kurjan J, Taylor BL (eds) Signal Transduction: Prokaryotic and Simple Eukaryotic Systems, pp. 377–389. Academic Press, New York (1993).Google Scholar
  94. 123.
    Isshiki T, Mochizuki N, Maeda T, Yamamoto M: Characterization of a fission yeast gene, gpa2, that encodes a Gα subunit involved in the monitoring of nutrition. Genes Devel 6: 2455–2462 (1992).PubMedGoogle Scholar
  95. 124.
    Iino M, Endo M: Calcium-dependent immediate feedback control of inositol 1,4,5-trisphosphate-induced Ca2+ release. Nature 360: 76–78 (1992).CrossRefPubMedGoogle Scholar
  96. 125.
    Inagami T. Atrial natriuretic factor. J Biol Chem 264: 3043–3046 (1989).PubMedGoogle Scholar
  97. 126.
    Inglese J, Freedman NJ, Koch WJ, Lefkowitz RJ: Structure and mechanism of the G protein-coupled receptor kinases. J Biol Chem 268: 23735–23738 (1993).PubMedGoogle Scholar
  98. 127.
    Janssens PMW, deJong CCC, Vink AA, vanHaastert PJM. Regulatory properties of magnesium-dependent guanylate cyclase in Dictyostelium discoideum membranes. J Biol Chem 264: 4329–4335 (1989).PubMedGoogle Scholar
  99. 128.
    Johnson KE, Cameron S, Toda T, Wigler M, Zoller MJ: Expression in Escherichia coli of BCY1, the regulatory subunit of cyclic AMP-dependent protein kinase from Saccharomyces cerevisiae—purification and characterization. J Biol Chem 262: 8636–8642 (1987).PubMedGoogle Scholar
  100. 129.
    Johnson RL, Saxe CL, Gollop R, Kimmel AR, Devreotes PN. Identification and targeted gene disruption of cAR3, a cAMP receptor subtype expressed during multicellular stages of Dictyostelium development. Genes Devel 7: 273–282 (1992).Google Scholar
  101. 130.
    Jones DT, Reed RR. Golf:an olfactory neuron specific-G protein involved in odorant signal transduction. Science 244: 790–795 (1992).Google Scholar
  102. 131.
    Kahn RA, Yucel JK, Malhotra V: ARF signalling: a potential role for phospholipase D in membrane traffic. Cell 75: 1045–1048 (1993).CrossRefPubMedGoogle Scholar
  103. 132.
    Kalderon D, Rubin GM: cGMP-dependent protein kinase genes in Drosophila. J Biol Chem 264: 10738–10748 (1989).PubMedGoogle Scholar
  104. 133.
    Katoaka T, Powers S, McGill C, Fasano O, Strathern J, Broach J, Wigler M: Genetic analysis of yeast RAS1 and RAS2 genes. Cell 37: 437–445 (1984).CrossRefPubMedGoogle Scholar
  105. 134.
    Kataoka T, Broek D, Wigler M: DNA sequence and characterization of the S. cerevisiae gene encoding adenylate cyclase. Cell 43: 493–505 (1985).CrossRefPubMedGoogle Scholar
  106. 135.
    Katsushika S, Chen L, Kawabe J, Nilakantan R, Halnon NJ, Homcy CJ, Ishikawa Y. Cloning and characterization of a sixth adenylyl cyclase isoform: types V and VI constitute a subgroup within the mammalian adenylyl cyclase family. Proc Natl Acad Sci USA 89: 8744–8778 (1992).Google Scholar
  107. 136.
    Kaupp UB, Niidome T, Tanabe T, Terada S, Bonigk W, et al.: Primary structure and functional expression from complementary DNA of the rod photoreceptor cyclic GMP-gated channel. Nature 342: 762–766 (1989).CrossRefPubMedGoogle Scholar
  108. 137.
    Kawamura S. Rhodopsin phosphorylation as a mechanism of cyclic GMP phosphodiesterase regulation by S-modulin. Nature 362: 855–857 (1993).CrossRefPubMedGoogle Scholar
  109. 138.
    Kazlauskas A, Cooper JA: Autophosphorylation of the PDGF receptor in the kinase insert region regulates interactions with cell proteins. Cell 58: 1121–1132 (1989).CrossRefPubMedGoogle Scholar
  110. 139.
    Kazlauskas A, Kashishian A, Cooper JA, Valius M: GTPase-activating protein and phosphatidylinositol 3-kinase bind to distinct regions of the platelet-derived growth factor receptor β subunit. Mol Cell Biol 12: 2534–2544 (1992).PubMedGoogle Scholar
  111. 140.
    Kazlauskas A, Feng GS, Pawson T, Valius M: The 64 kD protein that associates with the PDGF receptor subunit via tyrosine 1009 is the SH2 containing phosphotyrosine phosphatase Syp. Proc Natl Acad Sci USA 90: 6939–6942 (1993).PubMedGoogle Scholar
  112. 141.
    Kesbeke F, Snaar-Jagalska BE, vanHaastert PJM: Signal transduction in Dictyostelium fgdA mutants with a defective interaction between surface cAMP receptor and a GTP-binding regulatory protein. J Cell Biol 197: 521–528 (1988).CrossRefGoogle Scholar
  113. 142.
    Kitamura K, Shimoda C: The Schizosaccharomyces pombe mam2 gene encodes a putative pheromone receptor which has a significant homology with the Saccharomyces cerevisiae Ste2 protein. EMBO J 10: 3743–3751 (1991).PubMedGoogle Scholar
  114. 143.
    Klein PS, Sun TJ, Saxe CL, Kimmel AR, Johnson RJ, Devreotes PN: A chemoattractant receptor controls development in Dictyostelium discoideum. Science 241: 1467–1472 (1988).PubMedGoogle Scholar
  115. 144.
    Klump S, Kleefeld G, Schultz JE: Calcium/calmodulinregulated guanylate cyclase of the excitable ciliary membrane from Paramecium. J Biol Chem 258: 12455–12549 (1983).PubMedGoogle Scholar
  116. 145.
    Knighton DR, Zheng J, Ten Eyck LF, Ashford VA, Xuong N, Taylor SS, Sowadski JM. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 254: 407–414 (1991).Google Scholar
  117. 146.
    Knighton DR, Zheng J, Ten Eyck LF, Xyong N, Taylor SS, Sowadski JM: Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253: 414–420 (1991).PubMedGoogle Scholar
  118. 147.
    Koch CA, Anderson D, Moran MF, Ellis C, Pawson T: SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling molecules. Science 252: 668–674 (1991).PubMedGoogle Scholar
  119. 148.
    Koide H, Ogita K, Kikkawa U, Nishizuka Y: Isolation and characterization of the ε subspecies of protein kinase C from rat brain. Proc Natl Acad Sci USA 89: 1149–1153 (1992).PubMedGoogle Scholar
  120. 149.
    Koch W, Heidecker G, Kochs G et al.: Protein kinase C α activates RAF-1 by direct phosphorylation. Nature 364: 249–252 (1993).CrossRefPubMedGoogle Scholar
  121. 150.
    Koller KJ, DeSauvage FJ, Lowe DG, Goeddel DV: Conservation of the kinaselike regulatory domain is essential for activation of the natriuretic peptide receptor guanylyl cyclases. Mol Cell Biol 12: 2581–2590 (1992).PubMedGoogle Scholar
  122. 151.
    Koretzky GA, Picus J, Thomas ML, Weiss A: Tyrosine phosphatase CD45 is essential for coupling T-cell antigen receptor to the phosphatidylinositol pathway. Nature 346: 66–68 (1990).CrossRefPubMedGoogle Scholar
  123. 152.
    Koretzky GA, Picus J, Schultz T, Weiss A: Tyrosine phosphatase CD45 is required for T-cell antigen receptor and CD2-mediated activation of a protein tyrosine kinase and interleukin 2 production. Proc Natl Acad Sci USA 88: 2037–2041 (1991).PubMedGoogle Scholar
  124. 153.
    Krueger NX, Streuli M, Saito H: Structural diversity and evolution of human receptor-like protein tyrosine phosphatases. EMBO J 9: 3241–3252 (1990).PubMedGoogle Scholar
  125. 154.
    Krupinski J, Coussen F, Bakalyar HA, Tang WJ, Feinstein PG, Orth K, Slaughter C, et al.: Adenylyl cyclase amino acid sequence: possible channel- or transporter-like structure. Science 244: 1558–1564 (1989).PubMedGoogle Scholar
  126. 155.
    Kumagai A, Pupillo M, Gundersen R, Miake-Lye R, Devreotes PN, Firtel RA. Regulation and function of Gα protein subunits in Dictyostelium. Cell 57: 265–275 (1989).CrossRefPubMedGoogle Scholar
  127. 156.
    Kume S, Muto A, Aruga J, Nakagawa T, Michikawa Y, Furuichi T, Nakade S, Okano H, Mikoshiba K: The Xenopus IP3 receptor: structure, function, and localization in oocytes and eggs. Cell 73: 555–570 (1993).CrossRefPubMedGoogle Scholar
  128. 157.
    Kyriakis JM, App H, Zhang X, Banerjee P, Brautigan DL, Rapp UR, Avruch J: Raf-1 activates MAP kinasekinase. Nature 358: 417–421 (1992).CrossRefPubMedGoogle Scholar
  129. 158.
    Labib K, Nurse P: Bring on the phosphatases. Curr Biol 3: 164–166 (1993).CrossRefPubMedGoogle Scholar
  130. 159.
    Lambrecht HG, Koch KW: A 26 kD calcium binding protein from bovine rod outer segments as modulator of photoreceptor guanylate cyclase. EMBO J 10: 793–798 (1991).PubMedGoogle Scholar
  131. 160.
    Lange-Carter Ca, Pleiman CM, Gardener AM, Blumer KJ, Johnson GL. A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science 260: 315–319 (1993).PubMedGoogle Scholar
  132. 161.
    Langosch D, Thomas L, Betz H: Conserved quaternary structure of ligand-gated ion channels: the postsynaptic glycine receptor is a pentamer. Proc Natl Acad Sci USA 85: 7394–7398 (1988).PubMedGoogle Scholar
  133. 162.
    Leach KL, Ruff VA, Jarpe MB, Adams LD, Fabbro D, Raben DM: α-Thrombin stimulates nuclear diglyceride levels and differential nuclear localization of protein kinase C isozymes in IIC9 cells. J Biol Chem 267: 21816–21822 (1992).PubMedGoogle Scholar
  134. 163.
    Leberer E, Dignard D, Harcus D, Thomas DY, Whiteway M: The protein kinase homologue Ste20p is required to link the yeast pheromone response G-protein βγ subunits to downstream signalling components. EMBO J: 11: 4815–4824 (1992).PubMedGoogle Scholar
  135. 164.
    Lee CH, Park D, Wu D, Rhee SG, Simon MI: Members of the Gqα subunit gene family activate phospholipase C-β isozymes. J Biol Chem 267: 16044–16047 (1992).PubMedGoogle Scholar
  136. 165.
    Lefkowitz RJ: Protein-coupled receptor kinases. Cell 74: 409–412 (1993).PubMedGoogle Scholar
  137. 166.
    Lefkowitz RJ, Caron MG: Adrenergic receptors—models for the study of receptors coupled to guanine nucleotide regulatory proteins. J Biol Chem 263: 4993–4996 (1988).PubMedGoogle Scholar
  138. 167.
    Leichtling BH, Spitz E, Rickenberg HV: A cAMP-binding protein from Dictyostelium discoideum regulates mammalian protein kinase. Biochem Biophys Res Common Biophys 100: 515–522 (1981).Google Scholar
  139. 168.
    Levin DR, Fields FO, Kuniswawa R, Bishop JM, Thorner J: A candidate protein kinase C gene, PKC1, is required for the S. cerevisiae cell cycle. Cell 62: 213–224 (1990).CrossRefPubMedGoogle Scholar
  140. 169.
    Levin LR, Han PL, Hwang PM, Feinstein PG, Davis RL, Reed RR: The Drosophila learning and memory gene rutabaga encodes a Ca2+/calmodulin-responsive adenylyl cyclase. Cell 68: 479–489 (1992).CrossRefPubMedGoogle Scholar
  141. 170.
    Lerea CL, Somers DE, Hurley JB, Klock IB, Bunt-Milam AH. Identification of specific transducin α subunits in retinal rod and cone photoreceptors. Science 234: 77–80 (1986).PubMedGoogle Scholar
  142. 171.
    Lilly P, Wu L, Welker DL, Devreotes PNA: G-protein β subunit is essential for Dictyostelium development. Genes Devel 7: 986–995 (1993).PubMedGoogle Scholar
  143. 172.
    Lincoln TM, Thompson M, Cornwell TL: Purification and characterization of two forms of cyclic GMP-dependent protein kinase from bovine aorta. J Biol Chem 263: 17632–17637 (1986).Google Scholar
  144. 173.
    Liscovitch M: Crosstalk among multiple signal-activated phospholipases. Trends Biochem Sci 17: 393–399 (1992).CrossRefPubMedGoogle Scholar
  145. 174.
    Liyanage M, Frith D, Livneh E, Stabel S: Protein kinase C group B members PKC-δ,-ε,-ζ, and PKC-L(ν) — comparison of properties of recombinant protein in vitro and in vivo. Biochem J 283: 781–787 (1992).PubMedGoogle Scholar
  146. 175.
    Lochrie MA, Mendel JE, Sternberg PW, Simon MI: Homologous and unique G protein alpha subunits in the nematode Caenorhabditis elegans. Cell Regul 2: 135–154 (1991).PubMedGoogle Scholar
  147. 176.
    Loewenstein WR: The cell-to-cell channel of gap junctions. Cell 48: 725–726 (1987).CrossRefPubMedGoogle Scholar
  148. 177.
    Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE: The βγ subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325: 321–326 (1987).CrossRefPubMedGoogle Scholar
  149. 178.
    Lowe DG, Chang MS, Hellmiss R, Chen E, Singh S, Garbers DL, Goeddel DV: Human atrial natriuretic peptide receptor defines a new paradigm for second messenger signal transduction. EMBO J 8: 1377–1384 (1989).PubMedGoogle Scholar
  150. 179.
    Lowenstein EJ, Daly RJ, Batzer AG, Li W, Margolis B, Lammers R, Ullrich A, Skolnik EY, Bar-Sagi D, Schlessinger J, The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signalling. Cell 70: 431–442 (1992).CrossRefPubMedGoogle Scholar
  151. 180.
    Ludérus MEE, van derMost RG, Otte AP, vanDriel R: A protein kinase C-related enzyme activity in Dictyostelium discoideum. FEBS Lett 253: 71–75 (1989).CrossRefGoogle Scholar
  152. 181.
    Ma HW, Blitzer RD, Healy ED, Premont RT, Landau EM, Iyengar R. Receptor-evoked Cl-current in Xenopus Oocytes is mediated through a β-type phospholipase C. J Biol Chem 268: 19915–19918 (1993).PubMedGoogle Scholar
  153. 182.
    Maeda N, Kawasaki T, Nakade S, Yokota N, Taguchi T, Kasai M, Mikoshiba K: Structural and functional characterization of inositol 1,4,5-trisphosphate receptor channel from mouse cerebellum. J Biol Chem 266: 1109–1116 (1991).PubMedGoogle Scholar
  154. 183.
    Mann SKO, Yonemoto WM, Taylor SS, Firtel RA: DdPK3, which plays essential roles during Dictyostelium development, encodes the catalytic subunit of cAMP-dependent protein kinase. Proc Natl Acad Sci USA 89: 10701–10705 (1992).PubMedGoogle Scholar
  155. 184.
    Margolis B, Li N, Koch A, Mohammadi M, Hurwitz D, Ullrich A, Zilberstein A, Pawson T, Schlessinger J: The tyrosine phosphorylated carboxy terminus of the EGF receptor is a binding site for GAP and PLCγ. EMBO J 9: 4375–4380 (1990).PubMedGoogle Scholar
  156. 185.
    Martelli AM, Gilmour RS, Bertagnolo V, Neri LM, Manzoli L, Cocco L. Nuclear localization and signalling activity of phosphoinositidase Cβ in Swiss 3T3 cells. Nature 358: 242–245 (1992).CrossRefPubMedGoogle Scholar
  157. 186.
    Matsumoto K, Uno I, Oshima Y, Ishikawa T: Isolation and characterization of yeast mutants deficient in adenylate cyclase and cAMP-dependent protein kinase. Proc Natl Acad Sci USA 79: 2355–2359 (1982).PubMedGoogle Scholar
  158. 187.
    McKay DB, Weber IT, Steitz TA: Structure of catabolite gene activator protein at 2.9-A resolution. J Biol Chem 257: 9518–9524 (1982).PubMedGoogle Scholar
  159. 188.
    McLaughlin SK, McKinnon PJ, Margolskee RF: Gustducin is a taste-cell-specific G protein closely related to the transducins. Nature 357: 563–569 (1992).CrossRefPubMedGoogle Scholar
  160. 189.
    Méry PF, Lohmann SM, Walter U, Fischmeister R: Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci USA 88: 1197–1201 (1991).PubMedGoogle Scholar
  161. 190.
    Mignery GA, Südhof TC, Takei K, DeCamilli P: Putative receptor for inositol 1,4,5-trisphosphate similar to ryanodine receptor. Nature 342: 192–195 (1989).CrossRefPubMedGoogle Scholar
  162. 191.
    Mignery GA, Südhof TC. The ligand binding site and transduction mechanism in the inositol-1,4,5-triphosphate receptor. EMBO J 9: 3893–3898 (1990).PubMedGoogle Scholar
  163. 192.
    Mignery GA, Johnston PA, Sudhof TC. Mechanism of Ca2 + inhibition of inositol 1,4,5-trisphosphate (InsP3) binding to the cerebellar InsP3 receptor. J Biol Chem 267: 7450–7455 (1992).PubMedGoogle Scholar
  164. 193.
    Millar JBA, Lenaers G, Russel P: Pyp3 PTPase acts as a mitotic inducer in fission yeast. EMBO J 11: 4933–4941 (1992).PubMedGoogle Scholar
  165. 194.
    Millar JBA, Russel P, Dixon JE, Guan KL: Negative regulation of mitosis by two functionally overlapping PTPases in fission yeast. EMBO J 11: 4943–4952 (1992).PubMedGoogle Scholar
  166. 195.
    Miyajima I, Nakafuku M, Nakayama N, Brenner C, Miyajima I, Kaibuchi AK, Arai K, Kaziro Y, Matsumoto K: GPA1, a haploid-specific essential gene, encodes a yeast homolog of mammalian G protein which may be involved in mating factor signal transduction. Cell 50: 1011–1019 (1987).CrossRefPubMedGoogle Scholar
  167. 196.
    Mohammadi M, Dionne Ca, Li W, Li N, Spivak T, Honegger AM, Jaye M, Schlessinger J: Point mutation in FGF receptor eliminates phosphatidylnositol hydrolysis without affecting mitogenesis. Nature 358: 681–684 (1992).CrossRefPubMedGoogle Scholar
  168. 197.
    Moran MF, Koch CA, Anderson D, Ellis C, England L, Martin GS, Pawson T: Src homology region 2 domains direct protein-protein interactions in signal transduction. Proc Natl Acad Sci USA 87: 8622–8626 (1990).PubMedGoogle Scholar
  169. 198.
    Mustelin T, Coggeshall KM, Altman A: Rapid activation of the T-cell tyrosine protein kinase pp56lck by the CD45 phosphotyrosine phosphatase. Proc Natl Acad Sci USA 86: 6302–6306 (1989).PubMedGoogle Scholar
  170. 199.
    Mutzel R, Lacombe ML, Simon MN, DeGunzburg J, Veron M: Cloning and cDNA sequence of the regulatory subunit of cAMP-dependent protein kinase from Dictyostelium discoideum. Proc Natl Acad Sci USA 84: 6–10 (1987).PubMedGoogle Scholar
  171. 200.
    Nakafuku M, Itoh H, Nakamura S, Kaziro Y: Occurrence in Saccharomyces cerevisiae of a gene homologous to the cDNA coding for the subunit of mammalian G proteins. Proc Natl Acad Sci USA 84: 2140–2144 (1987).PubMedGoogle Scholar
  172. 201.
    Nakafuku M, Obara T, Kaibuchi K, Miyajima I, Miyajima A, Itoh H, Nakamura S, Arai K, Matsumoto K, Kaziro Y: Isolation of a second yeast Saccharomyces cerevisiae gene (GPA2) coding for guanine nucleotide-binding regulatory protein: studies on its structure and possible functions. Proc Natl Acad Sci USA 85: 1374–1378 (1988).PubMedGoogle Scholar
  173. 202.
    Nakane M, Arai K, Saheki S, Kuno T, Buechler W, Murad F: Molecular cloning and expression of cDNAs coding for soluble guanylate cyclase from rat lung. J Biol Chem 265: 16841–16845 (1990).PubMedGoogle Scholar
  174. 203.
    Nakanishi H, Brewer KA, Exton JH: Activation of the ζ isozyme of protein kinase C by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 268: 13–16 (1993).PubMedGoogle Scholar
  175. 204.
    Nakanishi S. Molecular diversity of glutamate receptors and implications for brain function. Science 258: 597–603 (1992).PubMedGoogle Scholar
  176. 205.
    Nakayama N, Miyajima A, Arai K: Nucleotide sequences of STE2 and STE3, cell type-specific sterile genes from Saccharomyces cerevisiae. EMBO J 4: 2643–2648 (1985).Google Scholar
  177. 206.
    Nathans J, Hogness DS: Isolation and nucleotide sequence of the gene encoding human rhodopsin. Proc Natl Acad Sci USA 81: 4851–4855 (1984).PubMedGoogle Scholar
  178. 207.
    Nathans J, Thomas D, Hogness DS: Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science 232: 193–202 (1986).PubMedGoogle Scholar
  179. 208.
    Nishida E, Gotoh Y: The map kinase cascade is essential for diverse signal transduction pathways. Trends Biochem Sci 18: 128–131 (1993).CrossRefPubMedGoogle Scholar
  180. 209.
    Nishizuka Y: The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 224: 661–663 (1988).CrossRefGoogle Scholar
  181. 210.
    Noel JP, Hamm HE, Sigler PB: The 2.2 A crystal structure of transducin-α complexed with GTPγS. Nature 366: 654–663 (1993).CrossRefPubMedGoogle Scholar
  182. 211.
    Obara T, Nakafuku M, Yamamota M, Kaziro Y: Isolation and characterization of a gene encoding a G-protein α subunit from Schizosaccharomyces pombe: involvement in mating and sporulation pathways. Proc Natl Acad Sci USA 88: 5877–5881 (1991).PubMedGoogle Scholar
  183. 212.
    Ogita K, Miyamoto S, Yamaguchi K, Koide H, Fumisawa N, Kikkawa U, Sahara S, Fukami Y, Nishizuka Y: Isolation and characterization of δ-subspecies of protein kinase C from rat brain. Proc Natl Acad Sci USA 89: 1592–1596 (1992).PubMedGoogle Scholar
  184. 213.
    Olate J, Jorquera H, Purcell P, Codina J, Birnbaumer L, Allende JE: Molecular cloning and sequence determination of a cDNA coding for the α-subunit of a Go-type protein of Xenopus laevis oocytes. FEBS Lett 244: 188–192 (1989).CrossRefPubMedGoogle Scholar
  185. 214.
    Olivier JP, Raabe T, Henkemeyer M, Dickson B, Mbamalu G, Margolis B, Schlessinger J, Hafen E, Pawson T: A Drosophila SH2-SH3 adaptor protein implicated in coupling the sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange. Sos. Cell 73: 179–191 (1993).CrossRefGoogle Scholar
  186. 215.
    Ono Y, Fujii T, Ogita K, Kikkawa U, Igarashi K, Nishizuka Y. Protein kinase C ζ subspecies from rat brain: its structure, expression, and properties. Proc Natl Acad Sci USA 86: 3099–3103 (1989).PubMedGoogle Scholar
  187. 216.
    Ottillie S, Chernoff J, Hannig F, Hoffman CS, Erikson RL: The fission yeast genes pyp1+ and pyp2+ encode protein tyrosine phosphatases that negatively regulate mitosis. Mol Cell Biol 12: 5571–5580 (1992).PubMedGoogle Scholar
  188. 217.
    O'Tousa JE, Baehr W, Martin RL, Hirsh J, Pak WL, Applebury ML: The Drosophila ninaE gene encodes an opsin. Cell 40: 839–850 (1985).CrossRefPubMedGoogle Scholar
  189. 218.
    Pai EF, Krengerl U, Petsko GA, Goody RS, Kabsch W, Wittinghofer A: Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanisms of GTP hydrolysis. EMBO J 9: 2351–2359 (1990).PubMedGoogle Scholar
  190. 219.
    Park D, Jhon DY, Lee CW, Ryu SH, Rhee SG: Removal of the carboxyl-terminal region of phospholipase C-β1 by calpain abolishes activation by Gαq. J Biol Chem 268: 3710–3714 (1993).PubMedGoogle Scholar
  191. 220.
    Park D, Jhon DY, Lee CW, Lee KH, Rhee SG: Activation of phospholipase C isozymes by G protein βγ subunits. J Biol Chem 268: 4573–4576 (1993).PubMedGoogle Scholar
  192. 221.
    Parker MG: Steroid and related receptors. Curr Opin Cell Biol 5: 499–504 (1993).PubMedGoogle Scholar
  193. 222.
    Parks S, Wieschaus E. The Drosophila gastrulation gene concertina encodes a Gα-like protein. Cell 64: 447–458 (1991).CrossRefPubMedGoogle Scholar
  194. 223.
    Pawson T, Schlessinger J: SH2 and SH3 domains. Curr Biol 3: 434–442 (1993).CrossRefPubMedGoogle Scholar
  195. 224.
    Payne WE, Fitzgerald-Hayes M: A mutation in PLC1, a candidate phosphoinositide-specific phospholipase C gene from Saccharomyces cerevisiae, causes aberrant mitotic chromosome segregation. Mol Cell Biol 13: 4351–4364 (1993).PubMedGoogle Scholar
  196. 225.
    Pelech SL, Sanghere JS: Mitogen-activated protein kinases: versatile transducers for cell signalling. Trends Biochem Sci 17: 233–238 (1992).PubMedGoogle Scholar
  197. 226.
    Perkins LA, Larsen I, Perrimon N: Corkscrew encodes a putative protein tyrosine phosphatase that functions to transduce the terminal signal from the receptor tyrosine kinase torso. Cell 70: 225–236 (1992).CrossRefPubMedGoogle Scholar
  198. 227.
    Perrimon N: The torso receptor protein-tyrosine kinase signalling pathway: an endless story. Cell 74: 219–222 (1993).CrossRefPubMedGoogle Scholar
  199. 228.
    Pingel JT, Thomas ML: Evidence that the leukocytecommon antigen is required for antigen-induced T lymphocyte proliferation. Cell 58: 1055–1065 (1989).CrossRefPubMedGoogle Scholar
  200. 229.
    Pitt GS, Milona N, Borleis J, Lin KC, Reed RR, Devreotes PN: Structurally distinct and stage-specific adenylyl cyclase genes play different roles in Dictyostelium development. Cell 69: 305–315 (1992).CrossRefPubMedGoogle Scholar
  201. 230.
    Pollak MR, Brown EM, Chou YHW, Hebert SC, Marx SJ, Steinmann B, Levi T, Seidman CE, Seidman JG: Mutations in the human Ca2+-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell 75: 1297–1303 (1993).PubMedGoogle Scholar
  202. 231.
    Powers S, Kataoka T, Fasano O, Goldfarb M, Broach J, Wigler M: Genes in S. cerevisiae encoding proteins with domains homologous to the mammalian ras proteins. Cell 36: 607–612 (1984).PubMedGoogle Scholar
  203. 232.
    Price JV, Clifford RJ, Schupbach T: The maternal ventralizing locus torpedo is allelic to faint little ball, an embryonic lethal, and encodes the Drosophila EGF receptor homolog. Cell 56: 1085–1092 (1989).CrossRefPubMedGoogle Scholar
  204. 233.
    Probst WC, Snyder LA, Schuster DI, Brosius J, Sealfon SC: Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol 11: 1–20 (1992).PubMedGoogle Scholar
  205. 234.
    Pupillo M, Kumagai A, Pitt GS, Firtel RA, Devreotes PN: Multiple α subunits of guanine nucleotide-binding proteins in Dictyostelium. Proc Natl Acad Sci USA 86: 4892–4896 (1989).PubMedGoogle Scholar
  206. 235.
    Ravid S, Spudich JA: Membrane-bound Dictyostelium myosin heavy chain kinase: a developmentally regulated substrate-specific member of the protein kinase C family. Proc Natl Acad Sci USA 89: 5877–5881 (1992).PubMedGoogle Scholar
  207. 236.
    Rebecchi M, Peterson A, McLaughlin S. Phosphoinositide-specific phospholipase C-δ1 binds with high affinity to phospholipid vesicles containing phosphatidylinositol 4,5-bisphosphate. Biochemistry 31: 12742–12747 (1992).PubMedGoogle Scholar
  208. 237.
    Reymond CD, Gomer RH, Medhy MC, Firtel RA: Developmental regulation of a Dictyostelium gene encoding a protein homologous to mammalian ras protein. Cell 39: 141–148 (1984).CrossRefPubMedGoogle Scholar
  209. 238.
    Reymond CD, Gomer RH, Nellen W, Theibert A, Devreotes P, Firtel RA. Phenotypic changes induced by a mutated ras gene during the development of Dictyostelium transformants. Nature 323: 340–343 (1986).PubMedGoogle Scholar
  210. 239.
    Rhee SG, Choi KD: regulation of inositol phospholipidspecific phospholipase C isozymes. J Biol Chem 267: 12393–12396 (1992).PubMedGoogle Scholar
  211. 240.
    Robbins SM, Williams JG, Jermyn KA, Spiegelman GB, Weeks G: Growing and developing Dictyostelium cells express different ras genes. Proc Natl Acad Sci USA 86: 938–942 (1989).PubMedGoogle Scholar
  212. 241.
    Rosenthal A, Rhee L, Yadegari R, Paro R, Ullrich A, Goeddel DV: Structure and nucleotide sequence of a Drosophila melanogaster protein kinase C gene. EMBO J 6: 433–441 (1987).PubMedGoogle Scholar
  213. 242.
    Satoh T, Ross CA, Villa A, Supattapone S, Pozzan T, Snyder SH, Meldolesi J. The inositol 1,4,5-trisphosphate receptor in cerebellar Purkinje cells: quantitative immunogold labeling reveals concentration in an ER subcompartment. J Cell Biol 111: 615–624 (1990).CrossRefPubMedGoogle Scholar
  214. 243.
    Savarese TM, Fraser CM: In vitro mutagenesis and the search for structure-function relationships among G protein-coupled receptors. Biochem J 283: 1–19 (1992).PubMedGoogle Scholar
  215. 244.
    Saxe CL, Ginsburg GT, Louis JM, Johnson Rn, Devreotes PN, Kimmel AR: cAR2, a prestalk cAMP receptor required for normal tip formation and late development of Dictyostelium discoideum. Genes Devel 7: 262–272 (1992).Google Scholar
  216. 245.
    Schaeffer E, Smith D, Mardon D, Quinn W, Zuker C: Isolation and characterization of two new Drosophila protein kinase C genes, including one specifically expressed in photoreceptor cells. Cell 57: 403–412 (1989).CrossRefPubMedGoogle Scholar
  217. 246.
    Schlessinger J, Ullrich A: Growth factor signalling by receptor tyrosine kinases. Neuron 9: 383–391 (1992).CrossRefPubMedGoogle Scholar
  218. 247.
    Schlessinger J: How receptor tyrosine kinases activate ras. Trends Biochem Sci 18: 273–275 (1993).PubMedGoogle Scholar
  219. 248.
    Schmidt HHHW, Lohmann SM, Walter U: The nitric oxide and cGMP signal transduction system: regulation and mechanism of action. Biochim Biophys Acta 1178: 153–175 (1993).CrossRefPubMedGoogle Scholar
  220. 249.
    Schneuwly S, Burg MG, Lending C, Perdew MH, Pak WL: Properties of photoreceptor-specific phospholipase C encoded by the norpA gene of Drosophila melanogaster. J Biol Chem 266: 24314–24319 (1991).PubMedGoogle Scholar
  221. 250.
    Schofield PR, Darlison MG, Fujita N, Burt DR, Stephenson FA, Rodriguez H, Rhee LM, Ramachandran J, Reale V, Glencorse TA, Seeburg PH, Barnard EA: Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family. Nature 328: 221–227 (1987).CrossRefPubMedGoogle Scholar
  222. 251.
    Schultz JE, Schönefeld U, Klumpp S: Calcium/calmodulin-regulated guanylate cyclase and calcium-permeability in the ciliary membrane from Tetrahymena. Eur J Biochem 137: 89–94 (1983).PubMedGoogle Scholar
  223. 252.
    Schultz JE, Pohl T, Klumpp S: Voltage-gated Ca2+ entry into Paramecium linked to intraciliary increase in cyclic GMP Nature 322: 271–273 (1986).Google Scholar
  224. 253.
    Schulz S, Singh S, Bellet RA, Singh G, Tubb DJ, Chin H, Garbers DL: The primary structure of a plasma membrane guanylate cyclase demonstrates diversity within this new receptor family. Cell 58: 1155–1162 (1989).CrossRefPubMedGoogle Scholar
  225. 254.
    Schulz S, Green CK, Yuen PST, Garbers DL: Guanylyl cyclase is a heat-stable enterotoxin receptor. Cell 63: 941–948 (1990).CrossRefPubMedGoogle Scholar
  226. 255.
    Seger R, Seger D, Lozeman FJ, Ahn NG, Graves LM, Campbell JS, Ericsson L, Harrylock M, Jensen AM, Krebs EG: Human T-cell mitogen-activated protein kinase kinases are related to yeast signal transduction kinases. J Biol Chem 267: 25628–25631 (1992).PubMedGoogle Scholar
  227. 256.
    Segre GV, Goldring SR: Receptors for secretin, calcitonin, parathyroid hormone (PTH)/PTH-related peptide, vasoactive intestinal peptide, glucagonlike peptide 1, growth hormone-releasing hormone, and glucagon belong to a newly discovered G-protein linked receptor family. Trends Endocrinol Metab 4: 309–314 (1993).CrossRefGoogle Scholar
  228. 257.
    Serafini T, Orci L, Amherdt M, Brunner M, Kahn RA, Rothman JE. ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein. Cell 67: 239–253 (1991).CrossRefPubMedGoogle Scholar
  229. 258.
    Shen SH, Bastien L, Posner BI, Chretien P: A proteintyrosine phosphatase with sequence similarity to the SH2 domain of the protein-tyrosine kinases. Nature 352: 736–739 (1991).CrossRefPubMedGoogle Scholar
  230. 259.
    Shirakabe K, Gotoh Y, Nishida E: A mitogen-activated protein (MAP) kinase activating factor in mammalian mitogen-stimulated cells is homologous to Xenopus M phase MAP kinase activator. J Biol Chem 267: 16685–16690 (1992).PubMedGoogle Scholar
  231. 260.
    Shiroo M, Goff L, Biffen M, Shivnan E, Alexander D: CD45 tyrosine phosphatase-activated p59fyn couples the T cell antigen receptor to pathways of diacylglycerol production, protein kinase C activation and calcium influx. EMBO J 11: 4887–4897 (1993).Google Scholar
  232. 261.
    Short AD, Klein MG, Schneider MF, Gill DL: Inositol 1,4,5-trisphosphate-mediated quantal Ca2+ release measured by high resolution imaging of Ca2+ within organelles. J Biol Chem 268: 25887–25983 (1993).PubMedGoogle Scholar
  233. 262.
    Shortridge RD, Yoon J, Lending CR, Bloomquist BT, Perdew MH, Pak WL: A Drosophila phospholipase C gene that is expressed in the central nervous system. J Biol Chem 266: 12474–12480 (1991).PubMedGoogle Scholar
  234. 263.
    Shyjan AW, deSauvage FJ, Gillett NA, Goeddel DV, Lowe DG. Molecular cloning of a retina-specific membrane guanylyl cyclase. Neuron 9: 727–737 (1992).CrossRefPubMedGoogle Scholar
  235. 264.
    Smercka AV, Hepler JR, Brown KO, Sternweis PC: Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq. Science 251: 804–807 (1991).PubMedGoogle Scholar
  236. 265.
    Simon MA, Dodson GS, Rubin GM: An SH3-SH2-SH3 protein is required for p21Ras1 activation and binds to Sevenless and Sos proteins in vitro. Cell 73: 169–177 (1993).CrossRefPubMedGoogle Scholar
  237. 266.
    Singh S, Lowe DG, Thorpe DS, Rodriguez H, Kuang WJ, Dangott L, Chinkers M, Goeddel DV, Garbers DL: Membrane guanylate cyclase is a cell-surface receptor with homology to protein kinases. Nature 334: 708–710 (1988).CrossRefPubMedGoogle Scholar
  238. 267.
    Songyang Z, Shoelson SE, Chaudhuri M, Gish G, Pawson P, Haser WG, King F, Roberts T, Ratnofsky S, Lechleider RJ et al.: SH2 domains recognize specific phosphopeptide sequences. Cell 72: 767–778 (1993).CrossRefPubMedGoogle Scholar
  239. 268.
    Sprenger F, Stevens LM, Müsslein-Volhard C: The Drosophila gene torso encodes a putative receptor tyrosine kinase. Nature 338: 478–483 (1989).CrossRefPubMedGoogle Scholar
  240. 269.
    Srivastava SP, Fuchs JA, Holtzman JL: The reported cDNA sequence for phospholipase C alpha encodes protein disulfide isomerase, isozyme Q-2 and not phospholipase C. Biochem Biophys Res Common 193: 971–978 (1993).CrossRefGoogle Scholar
  241. 270.
    Stahl ML, Ferenz CR, Kelleher KL, Kriz RW, Knopf JL: Sequence similarity of phospholipase C with the non-catalytic region of src. Nature 332: 269–272 (1988).CrossRefPubMedGoogle Scholar
  242. 271.
    Stearns T, Willingham MC, Botstein D, Kahn RA: ADP-ribosylation factor is functionally and physically associated with the Golgi comples. Proc Natl Acad Sci USA 87: 1238–1242 (1990).PubMedGoogle Scholar
  243. 272.
    Strathmann MP, Simon MI: Gα12 and Gα13 subunits define a fourth class of G protein α subunits. Proc Natl Acad Sci USA 88: 5582–5586 (1991).PubMedGoogle Scholar
  244. 273.
    Streb H, Irvine RF, Berridge MJ, Schulz I: Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306: 67–68 (1983).PubMedGoogle Scholar
  245. 274.
    Streuli M, Krueger NX, Hall LR, Schlossman SF, Saito H: A new member of the immunoglobulin superfamily that has a cytoplasmic region homologous to the leukocyte common antigen. J Exp Med 168: 1523–1530 (1988).CrossRefPubMedGoogle Scholar
  246. 275.
    Streuli M, Krueger NX, Tsai AYM, Saito H: A family of receptor-linked protein tyrosine phosphatases in humans and Drosophila. Proc Natl Acad Sci USA 86: 8698–8702 (1989).PubMedGoogle Scholar
  247. 276.
    Streuli M, Krueger NX, Thai T, Tang M, Saito H: Distinct function roles of the two intracellular phosphatase like domains of the receptor-linked protein tyrosine phosphatases LCA and LAR. EMBO J 9: 2399–2407 (1990).PubMedGoogle Scholar
  248. 277.
    Stryer L: Visual excitation and recovery. J Biol Chem 266: 10711–10714 (1991).PubMedGoogle Scholar
  249. 278.
    Südhof TC, Newton CL, ArcherIII BT, Ushkaryov YA, Mignery GA: Structure of a novel InsP3 receptor. EMBO 10: 3199–3206 (1991).Google Scholar
  250. 279.
    Suh PG, Ryu SH, Moon KH, Suh HW, Rhee SG: Inositolphospholipid-specific phospholipase C: complete cDNA and protein sequences and sequence homology to tyrosine kinase-related oncogene products. Proc Natl Acad Sci USA 85: 5419–5423 (1988).PubMedGoogle Scholar
  251. 280.
    Sun XJ, Rothenberg P, Kahn CR, Backer JM, Araki E, Wilden PA, Cahill DA, Goldstein BJ, White MF: Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 352: 73–77 (1991).CrossRefPubMedGoogle Scholar
  252. 281.
    Supattapone S, Danoff SK, Theibert A, Joseph SK, Steiner J, Snyder SH: Cyclic AMP-dependent phosphorylation of a brain inositol trisphosphate receptor decreases its release of calcium. Proc Natl Acad Sci USA 85: 8747–8750 (1988).PubMedGoogle Scholar
  253. 282.
    Tabuse Y, Nishiwaki K, Miwa J: Mutations in a protein kinase C homolog confer phorbol ester resistance on Caenorhabditis elegans. Science 243: 1713–1716 (1989).PubMedGoogle Scholar
  254. 283.
    Takeshima H, Nishimura S, Matsumoto T, Ishida H, Kangawa K, Minamino N, Matsuo H, Ueda M, Hanaoka M, Hirose T, Numa S: Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339: 439–445 (1989).CrossRefPubMedGoogle Scholar
  255. 284.
    Takio K, Smith SB, Krebs EG, Walsh KA, Titani K: Amino acid sequence of the regulatory subunit of bovine type II adenosine cyclic 3′5′-phosphate dependent protein kinase. Biochemistry 23: 4200–4206 (1984).PubMedGoogle Scholar
  256. 285.
    Takio K, Wade RD, Smith SB, Krebs EG, Walsh KA, Titani K: Guanosine cyclic 3′5′-phosphate dependent protein kinase, a chimeric protein homologous with two separate protein families. Biochemistry 23: 4207–4218 (1984).PubMedGoogle Scholar
  257. 286.
    Tanaka K, Nakafuku M, Satoh T, Marshall MS, Gibbs JB, Matsumoto K, Kariro Y, Toh-e: S. cerevisiae genes IRA1 and IRA2 encode proteins that may be functionally equivalent to mammalian ras GTPase activating protein. Cell 60: 803–807 (1990).CrossRefPubMedGoogle Scholar
  258. 287.
    Tanaka K, Davey J, Imai Y, Yamamoto M: Schizosaccharomyces pombe map3+ encodes the putative M-factor receptor. Mol Cell Biol 10: 4303–4313 (1993).Google Scholar
  259. 288.
    Tang W, Gilman AG: Type-specific regulation of adenylyl cyclase by G protein βγ subunits. Science 254: 1500–1503 (1991).PubMedGoogle Scholar
  260. 289.
    Tang W, Gilman AG: Adenylyl cyclases. Cell 70: 869–872 (1992).CrossRefPubMedGoogle Scholar
  261. 290.
    Tatchell K, Chaleff DT, DeFeo-Jones D, Scolnick EM: Requirement of either of a pair of ras-related genes of Saccharomyces cerevisiae for spore viability. Nature 309: 523–527 (1984).PubMedGoogle Scholar
  262. 291.
    Taylor CW, Marshall ICB: Calcium and inositol 1,4,5-trisphosphate receptors: a complex relationship. Trends Biochem Sci 17: 403–407 (1992).CrossRefPubMedGoogle Scholar
  263. 292.
    Taylor SJ, Chae HZ, Rhee SG, Exton JH: Activation of the β1 isozyme of phospholipase C by a subunits of the Gq class of G proteins. Nature 350: 516–518 (1991).CrossRefPubMedGoogle Scholar
  264. 293.
    Thomas GMH, Cunningham E, Fensome A, Ball A, Totty NF, Truong O, Hsuan JJ, Cockroft S: An essential role for phosphatidylinositol transfer protein in phospholipase C-mediated inositol lipid signalling. Cell 74: 919–928 (1993).CrossRefPubMedGoogle Scholar
  265. 294.
    Thorpe DS, Garbers DL: The membrane form of guanylate cyclase—homology with a subunit of the cytoplasmic form of the enzyme. J Biol Chem 264: 6545–6549 (1989).PubMedGoogle Scholar
  266. 295.
    Tian SS, Tsoulfas P, Zinn K: Three receptor-linked protein-tyrosine phosphatases are selectively expressed on central nervous system axons in the Drosophila embryo. Cell 67: 675–685 (1991).CrossRefPubMedGoogle Scholar
  267. 296.
    Titani K, Sasagawa T, Ericsson LH, Kumar S, Smith SB, Krebs EG, Walsh KA: Amino acid sequence of the regulatory subunit of bovine type I adenosine cyclic 3′5′-phosphate dependent protein kinase. Biochemistry 23: 4193–4199 (1984).PubMedGoogle Scholar
  268. 297.
    Toda T, Uno I, Ishikawa T, Powers S, Kataoka T, Broek D, Cameron S, Broach J, Matsumoto K, Wigler M: In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 40: 27–36 (1985).PubMedGoogle Scholar
  269. 298.
    Toda T, Cameron S, Sass P, Zoller M, Scott JD, McMullen B, Hurwitz M, Krebs EG, Wigler M: Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol Cell Biol 7: 1371–1377 (1987).PubMedGoogle Scholar
  270. 299.
    Toda T, Cameron S, Sass P, Zoller M, Wigler M: Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell 50: 277–287 (1987).CrossRefPubMedGoogle Scholar
  271. 300.
    Tonks NK, Charbonneau H, Diltz CD, Fischer EH, Walsh KA: Demonstration that leukocyte common antigen CD45 is a protein tyrosine phosphatase. Biochemistry 27: 8695–8701 (1988).PubMedGoogle Scholar
  272. 301.
    Uhler MD: Cloning and expression of a novel cyclic GMP-dependent protein kinase from mouse brain. J Biol Chem 268: 13586–13591 (1993).PubMedGoogle Scholar
  273. 302.
    Ullrich A, Schlessinger J: Signal transduction by receptors with tyrosine kinase activity. Cell 61: 203–212 (1990).PubMedGoogle Scholar
  274. 303.
    Valkema R, vanHaastert PJM: Inhibition of receptorstimulated guanylyl cyclase by intracellular calcium ions in dictyostelium discoideum cells. Biochem Biophys Res Commun 186: 263–268 (1992).PubMedGoogle Scholar
  275. 304.
    van derKaay J, Draijer R, vanHaastert PJM: Increased conversion of phosphatidylinositol to phosphatidylinositol phosphate in Dictyostelium cells expressing a mutated ras gene. Proc Natl Acad Sci USA 87: 9197–9201 (1990).PubMedGoogle Scholar
  276. 305.
    vanDop C, Tsubokawa M, Bourne HR, Ramachandran J: Amino acid sequence of retinal transducin at the site ADP-ribosylated by cholera toxin. J Biol Chem 259: 696–698 (1984).PubMedGoogle Scholar
  277. 306.
    vanHaastert PJM: Signal transduction and the control of development in Dictyostelium discoideum. Devel Biol 1: 159–167 (1990).Google Scholar
  278. 307.
    Vogel W, Lammers R, Huang J, Ullrich A: Activation of a phosphotyrosine phosphatase by tyrosine phosphorylation. Science 259: 1611–1614 (1993).PubMedGoogle Scholar
  279. 308.
    Ways DK, Cook PP, Webster C, Parker PP: Effect of phorbol esters on protein kinase C-ζ. J Biol Chem 267: 4799–4805 (1992).PubMedGoogle Scholar
  280. 309.
    Weaver CT, Pingel JT, Nelson JO, Thomas ML: CD8+ T-cell clones deficient in the expression of the CD45 protein tyrosine phosphatase have impaired responses to T-cell receptor stimuli. Mol Cell Biol 11: 4415–4422 (1991).PubMedGoogle Scholar
  281. 310.
    West RE, Moss J, Vaughan M, Liu T, Liu TY: Pertussis toxin-catalyzed ADP-ribosylation of transducin. J Biol Chem 260: 14428–14430 (1985).PubMedGoogle Scholar
  282. 311.
    Whiteway M, Hougan L, Dignard D, Thomas DY, Bell L, Saari GC, Grant FJ, O'Hara P, MacKay VL: The STE4 and STE18 genes of yeast encode potential β and γ subunits of the mating factor receptor-coupled G protein. Cell 56: 467–477 (1989).CrossRefPubMedGoogle Scholar
  283. 312.
    Whiteway M, Errede B: Signal transduction pathway for pheromone response in Saccharomyces cerevisiae. In: Kurjan J, Taylor BL (eds) Signal Transduction: Prokaryotic and simple Eukaryotic Systems, pp. 189–237. Academic Press, New York (1993).Google Scholar
  284. 313.
    Wolfe L, Corbin JD, Francis SH: Characterization of a novel isozyme of cGMP-dependent protein kinase from bovine aorta. J Biol Chem 264: 7734–7741 (1989).PubMedGoogle Scholar
  285. 314.
    Wu L, Devreotes PN: dictyostelium transiently expresses eight distinct G-protein α-subunits during its developmental program. Biochem Biophys Res Commun 179: 1141–1147 (1991).PubMedGoogle Scholar
  286. 315.
    Wu D, Jiang H, Katz A, Simon MI: Identification of critical regions on phospholipase C-β1 required for activation by G-proteins. J Biol Chem 268: 3704–3709 (1993).PubMedGoogle Scholar
  287. 316.
    Wu D, Katz A, Simon MI: Activation of phospholipase C β2 by the α and βγ subunits of trimeric GTP-binding protein. Proc Natl Acad Sci USA 90: 5297–5301 (1993).PubMedGoogle Scholar
  288. 317.
    Yamawaki-Kataoka Y, Tamaoki T, Choe HR, Tanaka H, Kataoka T: Adenylate cyclase in yeast: a comparison of the genes from Schizoaccharomyces pombe and Saccharomyces cerevisiae. Proc Natl Acad Sci USA 86: 5693–5697 (1989).PubMedGoogle Scholar
  289. 318.
    Yoko-o T, Matsui Y, Yagisawa H, Nojima H, Uno I, Toh-e A: The putative phosphoinositide-specific phospholipase C gene, PLC1, of the yeast Saccharomyces cerevisiae is important for cell growth. Proc Natl Acad Sci USA 90: 1804–1808 (1993).PubMedGoogle Scholar
  290. 319.
    Yoshikawa S, Tanimura T, Miyawaki A, Nakamura M, Yuzaki M, Furuichi T, Mikoshiba K: Molecular cloning and characterization of the inositol,4,5-trisphosphate receptor in Drosophila melanogaster. J Biol Chem 267: 16613–16619 (1992).PubMedGoogle Scholar
  291. 320.
    Yoshikawa S, Miyamoto I, Aruga J, Furuichi T, Okano H, Mikoshiba K: Isolation of a Drosophila gene encoding a head-specific guanylyl cyciase. J Neurochem 60: 1570–1573 (1993).PubMedGoogle Scholar
  292. 321.
    Yuen PST, Garbers DL: Guanylyl cyclase-linked receptors. Annu Rev Neurosci 15: 193–225 (1992).CrossRefPubMedGoogle Scholar
  293. 322.
    Zuker CS, Cowman AF, Rubin GM: Isolation and structure of rhodopsin gene from D. melanogaster. Cell 40: 851–858 (1985).CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Lyndsay Drayer
    • 1
  • Peter J. M. van Haastert
    • 1
  1. 1.Department of BiochemistryUniversity of GroningenGroningenThe Netherlands

Personalised recommendations