Hydrobiologia

, Volume 94, Issue 3, pp 231–236

Thermal acclimation in the fresh water planarians, Dugesia tigrina and D. dorotocephala

  • Dennis L. Claussen
  • Lisa M. Walters
Article

Abstract

The planarians Dugesia tigrina and D. dorotocephala show well developed resistance adaptation responses following transfer from 5 to 25 °C or the reverse. Their rates of thermal acclimation are typical of most organisms, but the magnitudes of their responses are impressively large. Thermal acclimation in these two species is generally similar, although somewhat more rapid and perhaps more extensive in D. tigrina. Forward and reverse acclimation rates are similar and there is evidence of overshoot and undershoot time course patterns respectively. Our heat resistance data, although based on a different methodology (the CTM method, using loss of equilibrium as the end point criterion) agree well with published values for these triclads. The temperature tolerance and thermal acclimation responses of D. tigrina and D. dorotocephala correlate well with their apparent eurythermy and their widespread distributions.

Keywords

thermal acclimation heat resistance acclimation rate planarians Dugesia tigrina Dugesia dorotocephala 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, B. J., 1960. A note on the oxygen and temperature tolerances of the triclads Phagocata gracilis (Haldeman) and Dugesis tigrina (Girard). Va. J. Sci. 11: 1–8.Google Scholar
  2. Art, G. R. & Claussen, D. L., 1982. The rate of thermal acclimation in the lizard; Anolis carolinensis. Copeia 1982: 189–192.Google Scholar
  3. Bläsing, I., 1953. Experimentelle Untersuchungen über den Umfang der ökologischen und physiologischen Toleranz von Planaria alpina Dana und Planaria gonocephala Dugès. Zool. Jb. (Physiol.). 64: 112–152.Google Scholar
  4. Chandler, C. M., 1966. Environmental factors affecting the local distribution and abundance of four species of stream-dwelling triclads. Invest. Indiana Lakes and Streams 7: 1–56.Google Scholar
  5. Claussen, D. L., 1977. Thermal acclimation in ambystomatid salamanders. Comp. Biochem. Physiol. 58A: 333–340.CrossRefGoogle Scholar
  6. Claussen, D. L., 1980. Thermal acclimation in the crayfish, Orconectes rusticus and O. virilis. Comp. Biochem. Physiol. 66A: 377–384.CrossRefGoogle Scholar
  7. Cowles, R. B. & Bogert, C. M., 1944. A preliminary study of the thermal requirements of desert reptiles. Bull. Am. Mus. Nat. Hist. 83: 261–296.Google Scholar
  8. Edney, E. B., 1964. Acclimation to temperature in terrestrial isopods—I. Lethal temperatures. Physiol. Zool. 37: 364–377.Google Scholar
  9. Hay, D. A. & Ball, I. R., 1979. Contributions to the biology of freshwater planarians (Turbellaria) from the Victorian Alps, Australia. Hydrobiologia 62: 137–164.Google Scholar
  10. Hutchison, V. H. & Rowlan, S. D., 1975. Thermal acclimation and tolerance in the mudpuppy, Necturus maculosus. J. Herpetol. 9: 367–368.Google Scholar
  11. Kawakatsu, M., 1965. On the ecology and distribution of freshwater planarians in the Japanese Islands, with special reference to their vertical distribution. Hydrobiologia 26: 349–408.Google Scholar
  12. Lascombe, C., Pattée, E. & Bornard, C., 1975. Le rôle ecologique de la température dans la distribution de deux espèces proches parentes de planaires d'eau douce: étude expérimentale. Hydrobiologia 47: 59–80.Google Scholar
  13. Layne, J. R. Jr. & Claussen, D. L., 1982. Seasonal variation in the thermal acclimation of CTMax and CTMin in the salamander Eurycea bislineata. J. thermal Biol. 7: 29–33.CrossRefGoogle Scholar
  14. Mast, S. O., 1903. Reactions to temperature changes in Spirillum, Hydra, and freshwater planarians. Am. J. Physiol. 10: 165–190.Google Scholar
  15. Pattée, E., 1966. Coefficients thermiques et écologie de quelques planaires d'eau douce — 1. Tolérance des adultes. Annls Limnol. 2: 469–475.Google Scholar
  16. Pattée, E., 1968. Coefficients thermiques et écologie de quelques planaires d'eau douce — 2. Tolérance de Dugesia gonocephala. Annls Limnol. 4: 99–104.Google Scholar
  17. Reynoldson, T. B., Young, J. O. & Taylor, M. C., 1965. The effects of temperature on the life-cycle of four species of lake-dwelling triclads. J. Anim. Ecol. 34: 23–43.Google Scholar
  18. Russier, R. & Lascombe, C., 1970. La planaire Americaine Dugesia tigrina dans la region Lyonnaise: écologie et tolérance thermique. Bull. mens. Soc. linn. Lyon 39: 197–206.Google Scholar
  19. Russier-Delolme, R., 1972. Coefficients thermiques et écologie de quelques planaires d'eau douce — 6. Dugesia tigrina. Annls Limnol. 8: 119–140.Google Scholar
  20. Speight, D. C. & Chandler, C. M., 1980. A laboratory study of substrate and temperature preferences of three species of freshwater planarians (Turbellaria: Tricladida). J. Tenn. Acad. Sci. 55:Google Scholar
  21. Tsukuda, H., Ogoshi, K. & Daikoku, T., 1978. Heat and cold tolerance of the planarian, Dugesia japonica, in relation to acclimation temperature. Annot. zool. Japon. 51: 70–78.Google Scholar
  22. Zivin, J. A. & Bartko, J. J., 1976. Statistics for disinterested scientists. Life Sci. 18: 15–26.CrossRefPubMedGoogle Scholar

Copyright information

© Dr W. Junk Publishers 1982

Authors and Affiliations

  • Dennis L. Claussen
    • 1
  • Lisa M. Walters
    • 1
  1. 1.Department of ZoologyMiami UniversityOxfordU.S.A.
  2. 2.Department of Zoology and PhysiologyUniversity of WyomingLaramieU.S.A.

Personalised recommendations