, Volume 324, Issue 3, pp 195–204 | Cite as

Effects of eucalyptus afforestation on leaf litter dynamics and macroinvertebrate community structure of streams in Central Portugal

  • M. Abelho
  • M. A. S. Graça


To test the hypothesis whether afforestation with Eucalyptus globulus affects litter dynamics in streams and the structure of macroinvertebrate aquatic communities, we compared streams flowing through eucalyptus and deciduous forests, paying attention to: (i) litterfall dynamics, (ii) accumulation of organic matter, (iii) processing rates of two dominant leaf species: eucalyptus and chestnut, and (iv) macroinvertebrate community structure. The amount of allochthonous inputs was similar in both vegetation types, but the seasonality of litter inputs differed between eucalyptus and natural deciduous forests. Eucalyptus forest streams accumulated more organic matter than deciduous forest streams. Decomposition of both eucalyptus and chestnut leaf litter was higher in streams flowing through deciduous forests. The eucalyptus forest soils were highly hydrophobic resulting in strong seasonal fluctuations in discharge. In autumn the communities of benthic macroinvertebrates of the two stream types were significantly different. Deciduous forest streams contained higher numbers of invertebrates and more taxa than eucalyptus forest streams. Mixed forest streams (streams flowing through eucalyptus forests but bordered by deciduous vegetation) were intermediate between the two other vegetation types in all studied characteristics (accumulation of benthic organic matter, density and diversity of aquatic invertebrates). These results suggest that monocultures of eucalyptus affect low order stream communities. However, the impact may be attenuated if riparian corridors of original vegetation are kept in plantation forestry.

Key words

reforestation litter dynamics streams aquatic macroinvertebrates Eucalyptus globulus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, N. H. & J. R. Sedell, 1979. Detritus processing by macroinvertebrates in stream ecosystems. Ann. Rev. Ent. 24: 351–377.Google Scholar
  2. A.P.H.A., I971. Standard methods for the examination of water and wastewater, 13th edn. Washington, D.C.Google Scholar
  3. Ashton D. H., 1975. Studies of litter in Eucalyptus regnans forests. Aust. J. Bot. 23: 413–433.Google Scholar
  4. Attiwill, P. M., H. B. Guthrie & R. Leuning, 1978. Nutrient cycling in a Eucalyptus obliqua (L'Hérit.) forest. I. Litter production and nutrient return. Aust. J. Bot. 26: 79–91.Google Scholar
  5. Bärlocher, F., C. Canhoto & M. A. S. Graça, 1995. Fungal colonization of alder and eucalypt leaves in two streams in Central Portugal. Arch. Hydrobiol. 113: 457–470.Google Scholar
  6. Barnes, J. R., J. V. McArthur & C. E. Cushing, 1986. Effect of excluding shredders on leaflitter decomposition in two streams. G. Basin Nat. 46: 204–207.Google Scholar
  7. Bilby, R. E. & G. E. Likens, 1980. Importance of organic debris dams in the structure and function of stream ecosystems. Ecology 61: 1107–1113.Google Scholar
  8. Bird, G. A. & N. K. Kaushik, 1992. Invertebrate colonization and processing of maple leaf litter in a forested and an agricultural reach of a stream. Hydrobiologia 234: 65–77.Google Scholar
  9. Birk, E. M., 1979. Overstorey and understorey litterfall in a eucalypt forest; spatial and temporal variability. Aust. J. Bot. 27: 145–156.Google Scholar
  10. Blackburn, W. M. & P. Petr, 1979. Forest litter decomposition and benthos in a mountain stream in Victoria, Australia. Arch. Hydrobiol 86: 453–498.Google Scholar
  11. Bretschko, G., 1990. The dynamic aspect of coarse particulate organic matter (CPOM) on the sediment surface free of debris dams (Ritrodat-Lunz study area). Hydrobiologia 203: 15–28.Google Scholar
  12. Bunn, S. E., 1986. Origin and fate of organic matter in Australian upland streams. In: De Dekker, P. & W. D. Williams (eds), Limnol. Austr.: 277–291. C.S.I.R.O.Google Scholar
  13. Bunn, S., D. H. Edward & N. R. Loneragan, 1986. Spatial and temporal variation in the macroinvertebrate fauna of streams of the northern jarrah forest, Western Australia: community structure. Freshwat. Biol. 16: 67–91.Google Scholar
  14. Burch, G. J., I. D. Moore & J. Burns, 1989. Soil hydrophobic effects on infiltration and catchment runoff. Hydrol. Processes 3: 211–222.Google Scholar
  15. Canhoto, C. & M. A. S. Graga, 1992 Importância das folhas de eucalipto na alimentação de detritivoros aquáticos em ribeiros da zona centro de Portugal. Actas do V Congresso Ibérico de Entomologia 1: 473–483.Google Scholar
  16. Canhoto, C. & M. A. S. Graga, 1995. Food value of introduced eucalypt leaves for a Mediterranean stream detritivore, Tipula lateralis. Freshwat. Biol. 34: 209–214.Google Scholar
  17. Chergui, H. & E. Pattee, 1991a. Dégradation des feuilles mortes allochtones dans le réseau de la Basse Moulouya, au Maroc. Acta Oecol. 12: 543–560.Google Scholar
  18. Chergui, H. & E. Pattee, 1991b. An experimental study of the breakdown of submerged leaves by hyphomycetes and invertebrates in Morocco. Freshwat. Biol. 26: 97–100.Google Scholar
  19. Cuffney, T. F., J. B. Wallace & G. J. Lugthart, 1990. Experimental evidence quantifying the role of benthic invertebrates in organic matter dynamics of headwater streams. Freshwat. Biol. 23: 281–299.Google Scholar
  20. Cummins, K. W., R. C. Petersen, F. O. Howard, J. C. Wuycheck & V.I. Holt, 1973. The utilization of leaf litter by stream detritivores. Ecology 54: 336–345.Google Scholar
  21. Cummins, K. W., M. A. Wilzbach, D. M. Gates, J. B. Perry & W. B. Taliaferro, 1989. Shredders and riparian vegetation. BioScience 39: 24–30.Google Scholar
  22. Faith, D. P., P. R. Minchin & L. Belbin, 1987. Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69: 57–68.Google Scholar
  23. Feio, M., 1989. A reconversão da agricultura e a problemática do eucalipto. Associação Central da Agricultura Portuguesa. Lisboa, 166 pp.Google Scholar
  24. Fisher, S. G. & G. E. Likens, 1973. Energy flow in Bear Brook, New Hampshire: an integrative approach to stream metabolism. Ecol. Monogr. 43: 421–439.Google Scholar
  25. Gregory, S. V., F. J. Swanson, W. A. Mckee & K. W. Cummins, 1991. An ecosystem perspective of riparian zones: focus on links between land and water. BioScience 41: 540–551.Google Scholar
  26. Hellawell, J. M., 1978. Biological Surveillance of Rivers: a Biological Monitoring Handbook. Water Research Centre, Stevenage Laboratory, Elder Waing, Herts SG1 1TH, 32 pp.Google Scholar
  27. Lamb, R. J., 1985. Litter fall and nutrient turnover in two eucalipt woodlands. Aust. J. Bot. 33: 1–14.Google Scholar
  28. Merritt, R. W. & K. W. Cummins (eds), 1984. An introduction to the aquatic insects of North America, 2nd edn. Kendall-Hunt Publishing Company, Dubuque, Iowa, 441 pp.Google Scholar
  29. Molles, M. C. Jr, 1982. Trichopteran communities of streams associated with aspen and conifer forests: long-term structural change. Ecology 63: 1–6.Google Scholar
  30. Ormerod, S. J., S. D. Rundle, E. C. Lloyd & A. A. Douglas, 1993. The influence of riparian management on the habitat structure and macroinvertebrate communities of upland streams draining plantation forests. J. appl. Ecol. 30: 13–24.Google Scholar
  31. O'Keefe, M. A. & P. S. Lake, 1987. The decomposition of pine, eucalypt and acacia litter in a small upland victorian stream. Bull. Aust. Limnol. 11: 15–32.Google Scholar
  32. Paiva, J. A. R., 1981. Mata da Margaraça e sua conversão em Reserva. Ann. Soc. Brot. 47: 49–66.Google Scholar
  33. Pinay, G., H. Décamps, E. Chauvet & C. Fustec, 1990. Functions of ecotones in fluvial systems: 141–169. In Naiman, R. J. & H. Décamps (eds), The ecology and management of aquaticterrestrial ecotones. Man and the Biosphere Series. Vol. 4. Unesco, Paris, 316 pp.Google Scholar
  34. Pressland, A. J., 1982. Litter production and decomposition from an overstorey of Eucalyptus spp on two catchments in a New England region of New South Wales. Aust. J. Ecol. 7: 171–180.Google Scholar
  35. Reice, S. R., 1977. The role of animal associations and current velocity in sediment-specific litter decomposition. Oikos 29: 357–365.Google Scholar
  36. Rounick, J. S. & M. J. Winterbourn, 1983. Leaf litter processing in two contrasting beech forest streams: effects of physical and biotic factors on litter breakdown. Arch. Hydrobiol. 96: 448–474.Google Scholar
  37. Siegel, S. & N. J. Castellan, Jr., 1988. Nonparametric statistics for the behavioral sciences. 2nd edn. McGraw-Hill Inc., Singapore, 399 pp.Google Scholar
  38. Shakesby, R. A., C. O. A. Coelho, A. D. F. Ferreira, J. P. Terry & R. P. D. Walsh, 1993. Wildfire impacts on soil erosion and hydrology in a wet Mediterranean forest, Portugal. Int. J. Wildland Fire 3: 95–110.Google Scholar
  39. Snaddon, C. D., B. A. Stewart & B. R. Davies, 1992. The effect of discharge on leaf retention in two headwater streams. Arch. Hyrobiol. 125: 109–120.Google Scholar
  40. Tachet, H., M. Bournaud & PH. Richoux, 1981. Introduction à l'étude des Macroinvertébrés des Eaux Douces. 3rd edn. C.R.D.P. Lyon, 155 pp.Google Scholar
  41. Teixeira, C., 1972. Carta geológica de Portugal, escala 1/500 000. Serv. Geol. Portugal, Lisboa.Google Scholar
  42. Terry, J. P., 1992. Rainsplash detachment and soil erosion in the Agueda basin, Portugal: the effects of forest fire and land management changes. PhD. thesis, University of Wales. Department of Geography, University College of Swansea.Google Scholar
  43. Webster, J. R. & E. F. Benfield, 1986. Vascular plant breakdown in freshwater ecosystems. Annu. Rev. Ecol. Syst. 17: 567–594.Google Scholar
  44. Zar, J. H., 1984. Biostatistical Analysis. 2nd edn. Prentice-Hall, Inc., Englewood Cliffs, N.J. 07623, London, 718 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • M. Abelho
    • 1
  • M. A. S. Graça
    • 1
  1. 1.Departamento de ZoologiaUniversidade de CoimbraCoimbra Codex

Personalised recommendations