Advertisement

Plant Molecular Biology

, Volume 19, Issue 1, pp 109–122 | Cite as

The molecular biology of disease resistance

  • N. T. Keen
Article

Key words

Pathogenicity and virulence mechanisms hypersensitive reaction (HR) elicitors disease resistance genes gene-for-gene complementarity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akiyoshi DE, Morris RO, Hinz R, Mischke BS, Kosuge T, Garfinkel DJ, Gordon MP, Nester EW: Cytokininauxin balance in crown gall tumors is regulated by specific loci in the T-DNA. Proc Natl Acad Sci USA 80: 407–411 (1983).Google Scholar
  2. 2.
    Anzai H, Yoneyama K, Yamaguchi I: Transgenic tobacco resistant to a bacterial disease by the detoxification of a pathogenic toxin. Mol Gen Genet 219: 492–494 (1989).CrossRefGoogle Scholar
  3. 3.
    Apostol I, Heinstein PF, Low PS: Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Role in defense and signal transduction. Plant Physiol 90: 109–116 (1989).Google Scholar
  4. 4.
    Baev N, Endre G, Petrovics G, Banfalvi Z, Kondorosi A. Six nodulation genes of nod box locus 4 in Rhizobium meliloti are involved in nodulation signal production: nodM codes for D-glucosamine synthetase. Mol Gen Genet 228: 113–124 (1991).CrossRefPubMedGoogle Scholar
  5. 5.
    Bauer DW, Beer SV: Further characterization of an hrp gene cluster of Erwinia amylovora. Mol Plant-Microbe Inter 4: 493–499 (1991).Google Scholar
  6. 6.
    Beachy RN, Loesch-Fries S, Tumer NE: Coat protein-mediated resistance against virus infection. Annu Rev Phytopath 28: 451–474 (1990).CrossRefGoogle Scholar
  7. 7.
    Bender CL, Stone HE, Sims JJ, Cooksey DA: Reduced pathogen fitness of Pseudomonas syringae pv. tomato Tn5 mutants defective in coronatine production. Physiol Mol Plant Path 30: 273–283 (1987).Google Scholar
  8. 8.
    Boccara M, Diolez A, Rouve M, Kotoujansky A: The role of individual pectate lyases of Erwinia chrysanthemi strain 3937 in pathogenicity on saintpaulia plants. Physiol Mol Plant Path 33: 95–104 (1988).Google Scholar
  9. 9.
    Boman HG, Hultmark D: Cell-free immunity in insects. Annu Rev Microbiol 41: 103–126 (1987).CrossRefPubMedGoogle Scholar
  10. 10.
    Bonas U, Stall RE, Staskawicz B: Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Mol Gen Genet 218: 127–136 (1989).CrossRefPubMedGoogle Scholar
  11. 11.
    Bostock RM, Stermer BA: Perspectives on wound healing in resistance to pathogens. Annu Rev Phytopath 27: 343–371 (1989).CrossRefGoogle Scholar
  12. 12.
    Broekert W, Lee H-I, Kush A, Chua N-H, Raikhel N: Wound-induced accumulation of mRNA containing a hevein sequence in laticifers of rubber tree (Hevea brasiliensis). Proc Natl Acad Sci USA 87: 7633–7637 (1990).PubMedGoogle Scholar
  13. 13.
    Broglie K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais CJ, Broglie R: Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254: 1194–1197 (1991).Google Scholar
  14. 14.
    Carney BF, Denny TP: A cloned avirulence gene from Pseudomonas solanacearum determines incompatibility on Nicotiana tabacum at the host species level. J Bact 172: 4836–4843 (1990).PubMedGoogle Scholar
  15. 15.
    Cervone F, Delorenzo G, Degra L, Salvi G, Bergami M: Purification and characterization of a polygalacturonase-inhibiting protein from Phaseolus vulgaris L. Plant Physiol 85: 631–637 (1987).Google Scholar
  16. 16.
    Cheong JJ, Hahn MG: A specific, high-affinity binding site for the hepta-B-glucoside elicitor exists in soybean membranes. Plant Cell 3: 137–147 (1991).CrossRefPubMedGoogle Scholar
  17. 17.
    Chrispeels MJ, Raikhel NV: Lectins, lectin genes, and their role in plant defense. Plant Cell 3: 1–9 (1991).CrossRefPubMedGoogle Scholar
  18. 18.
    Comai L, Kosuge T: Cloning and characterization of iaaM, a virulence determinant of Pseudomonas syringae pv. savastanoi. J. Bact 149: 40–46 (1982).PubMedGoogle Scholar
  19. 19.
    Crombie L: Natural resistance and susceptibility of plant hosts to fungal attack: the chemical base. In: Casida J (ed) Pesticides and Alternatives: Innovative Chemical and Biological Approaches to Pest Control, pp. 497–512. Elsevier, Amsterdam (1990).Google Scholar
  20. 20.
    Cruickshank IAM, Perrin DR: The isolation and partial characterization of monilicolin A, a polypeptide with phaseolin-inducing activity from Monilinia fructicola. Life Sci 7: 449–458 (1968).CrossRefPubMedGoogle Scholar
  21. 21.
    Culver JN, Dawson WO: Tobacco mosaic virus elicitor coat protein genes produce a hypersensitive phenotype in transgenic Nicotiana sylvestris plants. Mol Plant-Microbe Inter 4: 458–463 (1991).Google Scholar
  22. 22.
    Dangl JL: Regulatory elements controlling developmental and stress-induced expression of phenylpropanoid genes. In: Boller T, Meins F (eds) Plant Gene Research, vol. 8. Genes Involved in Plant Defense. Springer-Verlag, New York, in press (1992).Google Scholar
  23. 23.
    Debener T, Lehnackers H, Arnold M, Dangl JL: Identification and molecular mapping of a single Arabidopsis thaliana locus determining resistance to a phytopathogenic Pseudomonas syringae isolate. Plant J 1: 289–302 (1991).Google Scholar
  24. 24.
    DeFago G, Kern H, Sedlar L: Genetic analysis of tomatine insensitivity, sterol content and pathogenicity for green tomato fruits in mutants of Fusarium solani. Physiol Plant Path 22: 39–43 (1983).Google Scholar
  25. 25.
    DeFeyter R, Gabriel DW: At least six avirulence genes are clustered on a 90-kilobase plasmid in Xanthomonas campestris pv. malvacearum. Mol Plant-Microbe Inter 4: 423–432 (1991).Google Scholar
  26. 26.
    Denny TP, Baek SR: Genetic evidence that extracellular polysaccharide is a virulence factor of Pseudomonas solanacearum. Mol Plant-Microbe Inter 4: 198–206 (1991).Google Scholar
  27. 27.
    Desjardins AE, Gardner HW: Genetic analysis in Gibberella pulicaris: rishitin tolerance, rishitin metabolism, and virulence on potato tubers. Mol Plant-Microbe Inter 2: 26–34 (1989).Google Scholar
  28. 28.
    DeWit PJGM: Functional models to explain gene-for-gene relationships in plant pathogen interactions. In: Boller T, Meins F (eds.) Plant Gene Research, vol. 8. Genes Involved in Plant Defense. Springer-Verlag, New York, in press (1991).Google Scholar
  29. 29.
    DeWit PJGM, Hofman AE, Velthuis GCM, Kuc J: Isolation and characterization of an elicitor of necrosis isolated from intercellular fluids of compatible interactions of Cladosporium fulvum (syn. Fulvia fulva) and tomato. Plant Physiol 717: 642–647 (1985).Google Scholar
  30. 30.
    Dickman MB, Podila GK, Kolattukudy PE: Insertion of cutinase gene into a wound pathogen enables it to infect intact host. Nature 342: 446–448 (1989).CrossRefGoogle Scholar
  31. 31.
    Dietrich A, Mayer JE, Hahlbrock K: Fungal elicitor triggers rapid, transient, and specific protein phosphorylation in parsley cell suspension cultures. J Biol Chem 265: 6360–6368 (1990).Google Scholar
  32. 32.
    Dimarcq J-L, Zachary D, Hoffmann JA, Hoffmann D, Reichart J-M: Insect immunity: expression of the two major inducible antibacterial peptides, defensin and diptericin, in Phormia terranovae. EMBO J 9: 2507–2515 (1990).PubMedGoogle Scholar
  33. 33.
    Dixon RA, Harrison MJ: Activation, structure, and organization of genes involved in microbial defense in plants. Adv. Genet 28: 165–234 (1990).PubMedGoogle Scholar
  34. 34.
    Dixon RA, Lamb CJ: Molecular communication in interactions between plants and microbial pathogens. Annu Rev Plant Physiol Plant Mol Biol 41: 339–367 (1990).CrossRefGoogle Scholar
  35. 35.
    Douglas CJ, Hauffe KD, Itesmorales ED, Ellard M, Paszkowki U, Hahlbrock K, Dangl J: Exonic sequences are required for elicitor and light activation of a plant defense gene, but promoter sequences are sufficient for tissue specific expression. EMBO J 10: 1767–1776 (1991).PubMedGoogle Scholar
  36. 36.
    Dron M, Clouse SD, Dixon RA, Lawton MA, Lamb CJ: Glutathione and fungal elicitor regulation of a plant defense gene promoter in electroported protoplasts. Proc Natl Acad Sci USA 85: 6738–6742 (1988).Google Scholar
  37. 37.
    Ebel J: Phytoalexin synthesis: the biochemical analysis of the induction process. Annu Rev Phytopath 24: 235–264 (1986).CrossRefGoogle Scholar
  38. 38.
    Ebel J, Cosio EG, Frey T: Perception of pathogenderived elicitor and signal transduction in host defenses. In: Hennecke H, Verma DPS (eds) Advances in Molecular Genetics of Plant-Microbe Interactions, vol 1, pp. 421–427. Kluwer Academic Publishers Dordrecht, Netherlands (1991).Google Scholar
  39. 39.
    Ebel J, Grisebach H: Defense strategies of soybean against the fungus Phytophthora megasperma f.sp. glycinea: a molecular analysis. Trends Biochem Sci 13: 23–27 (1988).CrossRefPubMedGoogle Scholar
  40. 40.
    Ellis JG, Lawrence GJ, Peacock WJ, Pryor AJ: Approaches to cloning plant genes conferring resistance to fungal pathogens. Annu Rev Phytopath 26: 245–263 (1988).CrossRefGoogle Scholar
  41. 41.
    Flor HH: Inheritance of pathogenicity in Melampsora lini. Phytopathology 32: 653–669 (1942).Google Scholar
  42. 42.
    Flor HH: The complementary genic systems in flax and flax rust. Adv Genet 8: 29–54 (1956).Google Scholar
  43. 43.
    Gabriel DW, Rolfe BG: Working models of specific recognition in plant-microbe interactions. Annu Rev Phytopath 28: 365–391 (1990).CrossRefGoogle Scholar
  44. 44.
    Golemboski DB, Lomonossoff GP, Zaitlin M: Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proc Natl Acad Sci USA 87: 6311–6315 (1990).PubMedGoogle Scholar
  45. 45.
    Graham TL, Graham MY: Cellular coordination of molecular responses in plant defense. Mol Plant-Microbe Inter 4: 415–422 (1991).Google Scholar
  46. 46.
    Hahlbrock K, Scheel D: Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol 40: 347–369 (1989).CrossRefGoogle Scholar
  47. 47.
    Hahn MG, Bonhoff A, Grisebach H: Quantitative localization of the phytoalexin glyceollin I in relation to fungal hyphae in soybean roots infected with Phytophthora megasperma f.sp. glycinea. Plant Physiol 77: 591–601 (1985).Google Scholar
  48. 48.
    Hain R, Bieseler B, Kindl H, Schroder G, Stocker R: Expression of a stilbene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol. Plant Mol Biol 15: 325–335 (1990).PubMedGoogle Scholar
  49. 49.
    Hiatt A, Cafferkey R, Bowdish K: Production of antibodies in transgenic plants. Nature 342: 76–78 (1989).CrossRefPubMedGoogle Scholar
  50. 50.
    Hoxtermann E: Karl Otto Muller (1897–1978) und die Entdeckungsgeschichte der Phytoalexine (Anlasslich der Entdeckung eines neuen Abswehrprinzips der Pflanzen vor 50 Jahren). J Phytopath 132: 161–167 (1991).Google Scholar
  51. 51.
    Huang HC, Schuurink R, Denny TP, Atkinson MM, Baker CJ, Yucel I, Hutcheson SW, Collmer A: Molecular cloning of a Pseudomonas syringae pv. syringae gene cluster that enables Pseudomonas fluorescens to elicit the hypersensitive response in tobacco plants. J Bact 170: 4748–4756 (1988).PubMedGoogle Scholar
  52. 52.
    Huang HC, Hutcheson SW, Collmer A: Characterization of the hrp cluster from Pseudomonas syringae pv. syringae 61 and TnphoA tagging of genes encoding exported or membrane-spanning Hrp proteins. Mol Plant-Microbe Inter 4: 469–476 (1991).Google Scholar
  53. 53.
    Huang JS, Barker KR: Glyceollin I in soybean-cyst nematode interactions-spatial and temporal distribution in roots of resistant and susceptible soybeans. Plant Physiol 96: 1302–1307 (1991).Google Scholar
  54. 54.
    Huynh TV, Dahlbeck D, Staskawicz BJ: Bacterial blight of soybean: Regulation of a pathogen gene determining host cultivar specificity. Science 245: 1374–1377 (1989).PubMedGoogle Scholar
  55. 55.
    Kearney B, Staskawicz BJ: Widespread distribution and fitness contribution of Xanthomonas campestris avirulence gene avrBs2. Nature 346: 385–386 (1990).CrossRefPubMedGoogle Scholar
  56. 56.
    Keen NT: Phytoalexins and their elicitors. In: Microbes and Microbial Products as Herbicides, p. 114–129. ACS Symposium Series 439. American Chemical Society, Washington, DC (1990).Google Scholar
  57. 57.
    Keen NT: Gene-for-gene complementarity in plantpathogen interactions. Annu Rev Genet 24: 447–463 (1990).CrossRefPubMedGoogle Scholar
  58. 58.
    Keen NT, Bent A, Staskawicz B: Plant disease resistance genes: interactions with pathogens and their improved utilization to control plant diseases. In: Chet I (ed) Biotechnological Prospects for Plant Pathogen Control. Ecological and Applied Microbiology Series. J. Wiley, New York, in press (1992).Google Scholar
  59. 59.
    Keen NT, Buzzell RI: New disease resistance genes in soybean against Pseudomonas syringae pv. glycinea: evidence that one of them interacts with a bacterial elicitor. Theor Appl Genet 81: 133–138 (1991).CrossRefGoogle Scholar
  60. 60.
    Keen NT, Dawson WO: Pathogen avirulence genes and elicitors of plant defense. In: Boller T, Meins F (eds) Genes Involved in Plant Defense, vol. 8. Plant Gene Research, Springer-Verlag, New York, in press (1992).Google Scholar
  61. 61.
    Keen NT, Tamaki S, Kobayashi D, Gerhold D, Stayton M, Shen H, Gold S, Lorang J, Thordal-Christensen H, Dahlbeck D, Staskawicz B: Bacteria expressing avirulence gene D produce a specific elicitor of the soybean hypersensitive reaction. Mol Plant-Microbe Inter 3: 112–121 (1990).Google Scholar
  62. 62.
    Keppler LD, Baker CJ, Atkinson MM: Active oxygen production during a bacteria-induced hypersensitive reaction in tobacco suspension cells. Phytopathology 79: 974–978 (1989).Google Scholar
  63. 63.
    Kinscherf TG, Coleman RH, Barta TM, Willis DK: Cloning and expression of the tabtoxin biosynthetic region from Pseudomonas syringae. J Bact 173: 4124–4132 (1991).PubMedGoogle Scholar
  64. 64.
    Knight MR, Campbell AK, Smith SM, Trewavas AJ: Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352: 524–526 (1991).CrossRefPubMedGoogle Scholar
  65. 65.
    Knogge W, Hahn M, Lehnackers H, Rupping E, Wevelsiep L: Fungal signals involved in the specificity of the interaction between barley and Rhynchosporium secalis. In: Hennecke H, Verma DPS (eds) Advances in Molecular Genetics of Plant-Microbe Interactions, vol. 1, pp. 250–253. Kluwer Academic Publishers Dordrecht, Netherlands (1991).Google Scholar
  66. 66.
    Knorr DA, Dawson WO: A point mutation in the tobacco mosaic virus capsid protein gene induces hypersensitivity in Nicotiana sylvestris. Proc Natl Acad Sci USA 85: 170–174 (1988).Google Scholar
  67. 67.
    Kobayashi DY, Tamaki SJ, Keen NT: Cloned avirulence genes from the tomato pathogen Pseudomonas syringae pv. tomato confer cultivar specificity on soybean. Proc Natl Acad Sci USA 86: 157–161 (1989).Google Scholar
  68. 68.
    Kobayashi DY, Tamaki SJ, Keen NT: Molecular characterization of avirulence gene D from Pseudomonas syringae pv. tomato. Mol Plant-Microbe Inter 3: 94–102 (1990).Google Scholar
  69. 69.
    Kotoujansky A: Molecular genetics of pathogenesis by soft-rot Erwinias. Annu Rev Phytopath 25: 405–430 (1987).CrossRefGoogle Scholar
  70. 70.
    Kurosaki F, Tsurusawa Y, Nishi A: The elicitation of phytoalexins by Ca2+ and cyclic AMP in carrot cells. Phytochemistry 26: 1919–1923 (1987).CrossRefGoogle Scholar
  71. 71.
    Lehrer RI, Ganz T, Selsted ME: Defensins: endogenous antibiotic peptides of animal cells. Cell 64: 229–230 (1991).CrossRefPubMedGoogle Scholar
  72. 72.
    Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Prome JC, Denarie J: Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344: 781–784 (1990).CrossRefPubMedGoogle Scholar
  73. 73.
    Levings CS: CMS, the Texas cytoplasm and URF-13. Plant Mol Biol, in press (1992).Google Scholar
  74. 74.
    Lewis-Henderson W, Djordjevic MA: A cultivarspecific interaction between Rhizobium leguminosarum bv. trifolii and subterranean clover is controlled by nodM, other bacterial cultivar specificity genes, and a single recessive host gene. J Bact 173: 2791–2799 (1991).PubMedGoogle Scholar
  75. 75.
    Lindgren PB, Peet RC, Panopoulos NJ: Gene cluster of Pseudomonas syringae pv. ‘phaseolicola’ controls pathogenicity on bean plants and hypersensitivity on non-host plants. J Bact 168: 512–522 (1986).PubMedGoogle Scholar
  76. 76.
    Lois R, Dietrich A, Hahlbrock K: A phenylalanine ammonialyase gene from parsley: structure, regulation and identification of elicitor and light responsive cis-acting elements. EMBO J 8: 1641–1648 (1989).PubMedGoogle Scholar
  77. 77.
    Malamy J, Carr JP, Klessig DF, Raskin I: Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250: 1002–1004 (1990).Google Scholar
  78. 78.
    Martinez E, Romero D, Palacios R: The Rhizobium genome. Crit Rev Plant Sci 9: 59–93 (1990).Google Scholar
  79. 79.
    Mayama S, Tani T, Ueno T, Midland SL, Sims JJ, Keen NT: The purification of victorin and its phytoalexin elicitor activity in oat leaves. Physiol Mol Plant Path 29: 1–18 (1986).Google Scholar
  80. 80.
    Meier I, Hahlbrock K, Somssich IE: Elicitor-inducible and constitutive in vivo DNA footprints indicate novel cis-acting elements in the promoter of a parsley gene encoding pathogenesis-related protein 1. Plant Cell 3: 313–315 (1991).CrossRefGoogle Scholar
  81. 81.
    Mellano VJ, Cooksey DA: Development of host range mutants of Xanthomonas campestris pv. translucens. Appl Environ Microbiol 54: 884–889 (1988).Google Scholar
  82. 82.
    Metreaux P, Signer H, Ryals J, Ward E, Wyss-Benz M, Gaudin J, Raschdorf K, Schmid E, Blum W, Invernardi B: Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250: 1004–1006 (1990).Google Scholar
  83. 83.
    Mills D, Mukhopadhyay P, Zhao Y, Romantschuk M: Organization and function of pathogenicity genes of Pseudomonas syringae pathovars phaseolicola and syringae. In: Patil S et al. (eds) Molecular Strategies of Pathogens and Host Plants, pp. 69–81. Springer-Verlag, Berlin (1991).Google Scholar
  84. 84.
    Mo YY, Gross DC: Expression in vitro and during plant pathogenesis of the syrB gene required for syringomycin production by pseudomonas syringae pv. syringae. Mol Plant-Microbe Inter 4: 28–36 (1991).Google Scholar
  85. 85.
    Perlak FJ, Fuchs RL, Dean DA, McPherson SL, Fischoff DA: Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci USA 88: 3324–3328 (1991).PubMedGoogle Scholar
  86. 86.
    Peters NK, Verma DPS: Phenolic compounds as regulators of gene expression in plant-microbe interactions. Mol Plant-Microbe Inter 3: 4–8 (1990).Google Scholar
  87. 87.
    Pierce M, Essenberg M: Localization of phytoalexins in fluorescent mesophyll cells isolated from bacterial blight-infected cotton cotyledons and separated from other cells by fluorescence-activated cell sorting. Physiol Mol Plant Path 31: 273–290 (1987).Google Scholar
  88. 88.
    Preston JF, Rice JD, Chow MC, Brown BJ: Microbial strategies for the depolymerization of plant and algal polyuronates. Leatham GF, Himmel ME (eds) Enzymes in Biomass Conversion, pp. 450–466. ACS Symposium Series 460, American Chemical Society, Washington, DC (1991).Google Scholar
  89. 89.
    Reverchon S, vanGijsegem F, Rouve M, Kotoujansky A, Robert-Baudouy J: Organization of a pectate lyase gene family in Erwinia chrysanthemi. Gene 49: 215–224 (1986).CrossRefPubMedGoogle Scholar
  90. 90.
    Ricci P, Bonnet P, Huet JC, Sallantin M, Beauvais-Cante F, Bruneteau M, Billard V, Michel G, Pernollet JC: Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired resistance in tobacco. Eur J Biochem 183: 555–563 (1989).PubMedGoogle Scholar
  91. 91.
    Ried JL, Collmer A: Construction and characterization of an Erwinia chrysanthemi mutant with directed deletions in all of the pectate lyase structural genes. Mol Plant-Microbe Inter 1: 32–38 (1988).Google Scholar
  92. 92.
    Roby D, Broglie K, Cressman R, Biddle P, Chet I, Broglie R: Activation of a bean chitinase promoter in transgenic tobacco plants by phytopathogenic fungi. Plant Cell 2: 999–1007 (1990).CrossRefPubMedGoogle Scholar
  93. 93.
    Roche P, Lerouge P, Prome JC, Faucher C, Vasse J, Maillet F, Camut S, DeBilly F, Denarie J, Truchet G: NodRM-1, a sulphated lipo-oligosaccharide signal of Rhizobium meliloti elicits hair deformation, cortical cell division and nodule organogenesis on alfalfa roots. In: Hennecke H, Verma DPS (eds) Advances in Molecular Genetics of Plant-Microbe Interactions, pp. 119–126. Kluwer Academic Publishers, Dordrecht, Netherlands (1991).Google Scholar
  94. 94.
    Ryan CA: Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu Rev Phytopath 28: 425–449 (1990).CrossRefGoogle Scholar
  95. 95.
    Schafer W, Straney D, Ciuffetti L, VanEtten HD, Yoder OC: One enzyme makes a fungal pathogen, but not a saprophyte, virulent on a new host plant. Science 246: 247–249 (1989).Google Scholar
  96. 96.
    Scheel D, Parker JE: Elicitor recognition and signal transduction in plant defense gene activation. Z Naturforsch 45c: 569–575 (1990).Google Scholar
  97. 97.
    Scheffer RP: Role of toxins in evolution and ecology of plant pathogenic fungi. Experientia 47: 804–810 (1991).Google Scholar
  98. 98.
    Schmelzer E, Kruger-Lebus S, Hahlbrock K: Temporal and spatial patterns of gene expression around sites of attempted fungal infection in parsley leaves. Plant Cell 1: 993–1001 (1989).CrossRefPubMedGoogle Scholar
  99. 99.
    Sharp JK, McNeil M, Albersheim P: The primary structures of one elicitor-active and seven elicitor-inactive hexa (B-D-glucopyranosyl)-D-glucitols isolated from the mycelial walls of Phytophthora megasperma f.sp. glycinea. J. Biol Chem 259: 11321–11336 (1984).PubMedGoogle Scholar
  100. 100.
    Snyder BA, Nicholson RL: Synthesis of phytoalexins in sorghum as a site-specific response to fungal ingress. Science 248: 1637–1639 (1990).Google Scholar
  101. 101.
    Stab MR, Ebel J: Effects of Ca2+ on phytoalexin induction by fungal elicitor in soybean cells. Arch Biochem Biophys 257: 416–423 (1987).PubMedGoogle Scholar
  102. 102.
    Staskawicz BJ, Dahlbeck D, Keen NT: Cloned avirulence gene of Pseudomonas syringae pv. glycinea determines race-specific incompatibility on Glycine max (L.) Merr. Proc Natl Acad Sci USA 81: 6024–6028 (1984).Google Scholar
  103. 103.
    Straus D, Ausubel F: Genomic subtraction for cloning DNA corresponding to deletion mutations. Proc Natl Acad Sci USA 87: 1889–1893 (1990).PubMedGoogle Scholar
  104. 104.
    Swarup S, DeFeyter R, Brlansky RH, Gabriel DW: A pathogenicity locus from Xanthomonas citri enables strains from several pathovars of X. campestris to elicit cankerlike lesions on citrus. Phytopathology 81: 802–809 (1991).Google Scholar
  105. 105.
    Swarup S, Yang Y, Gabriel DW: A Xanthomonas citri pathogenicity gene, pthA, pleiotropically encodes gratuitous avirulence on non-hosts. Mol Plant-Microbe Inter, Okasset, still in press (1991).Google Scholar
  106. 106.
    Tamaki SJ, Gold S, Robeson M, Manulis S, Keen NT: Structure and organization of the pel genes from Erwinia chrysanthemi EC16. J Bact 170: 3468–3478 (1988).PubMedGoogle Scholar
  107. 107.
    Tamaki SJ, Kobayashi DY, Keen NT: Sequence domains required for the activity of avirulence genes avrB and avrC from Pseudomonas syringae pv. glycinea. J Bact 173: 301–307 (1991).PubMedGoogle Scholar
  108. 108.
    VanEtten HD, Matthews DE, Matthews PS: Phytoalexin detoxification: importance for pathogenicity and practical implications. Annu Rev Phytopath 27: 143–164 (1989).CrossRefGoogle Scholar
  109. 109.
    vanKan JAL, van denAckerveken GFJM, deWit PJGM: Cloning and characterization of cDNA of avirulence gene avr9 of the fungal pathogen Cladosporium fulvum, causal agent of tomato leaf mold. Mol Plant-Microbe Inter 4: 52–59 (1991).Google Scholar
  110. 110.
    Vigers AJ, Roberts WK, Selitrennikoff CP: A new family of plant antifungal proteins. Mol Plant-Microbe Inter 4: 315–323 (1991).Google Scholar
  111. 111.
    Waldmuller T, Grisebach H: Effects of R-(1-amino-2-phenylethyl)phosphonic acid on glyceollin accumulation and expression of resistance to Phytophthora megasperma f.sp. glycinea in soybean. Planta 172: 424–430 (1987).CrossRefGoogle Scholar
  112. 112.
    Waney VR, Kingsley MT, Gabriel DW: Xanthomonas campestris pv. translucens genes determining host specific virulence and general virulence on cereals identified by Tn5-gusA insertion mutagenesis. Mol Plant-microbe Inter 4: 623–627 (1991).Google Scholar
  113. 113.
    Welle R, Schroder G, Schiltz E, Grisebach H, Schroder J: Induced plant responses to pathogen attack. Analysis and heterologous expression of the key enzyme in the biosynthesis of phytoalexins in soybean (Glycine max L. Merr. cv. Harosoy 63). Eur J Biochem 196: 423–430 (1991).PubMedGoogle Scholar
  114. 114.
    Whalen MC, Stall RE, Staskawicz BJ: Characterization of a gene from a tomato pathogen determining hypersensitive resistance in non-host species and genetic analysis of this resistance in bean. Proc Natl Acad Sci USA 85: 6743–6747 (1988).Google Scholar
  115. 115.
    Willis DK, Rich JJ, Hrabak EM: hrp genes of phytopathogenic bacteria. Mol Plant-Microbe Inter 4: 132–138 (1991).Google Scholar
  116. 116.
    Willmitzer L: Genetic engineering for plant disease resistance. In: Chet I (ed) Innovative Approaches to Plant Disease Control, pp. 353–364, John Wiley, New York (1987).Google Scholar
  117. 117.
    Woloshuk CP, Kolattukudy PE: Mechanism by which contact with plant cuticle triggers cutinase gene expression in the spores of Fusarium solani f.sp. pisi. Proc Natl Acad Sci USA 83: 1704–1708 (1986).Google Scholar
  118. 118.
    Wolpert TJ, Macko V, Acklin W, Juan B, Seibl J, Meili J, Arigoni D: Structure of victorin C, the major hostselective toxin from Cochliobolus victoriae. Experentia 41: 1524–1529 (1985).Google Scholar
  119. 119.
    Wolpert TJ, Macko V: Specific binding of victorin to a 100-kDa protein from oats. Proc Natl Acad Sci USA 86: 4092–4096 (1989).Google Scholar
  120. 120.
    Yoshikawa M, Keen NT, Wang MC: A receptor on soybean membranes for a fungal elicitor of phytoalexin accumulation. Plant Physiol 73: 497–506 (1983).Google Scholar
  121. 121.
    Yoshikawa M, Yamauchi K, Masago H: Glyceollin: its role in restricting fungal growth in resistant soybean hypocotyls infected with Phytophthora megasperma var. sojae. Physiol Plant Path 12: 73–82 (1978).Google Scholar
  122. 122.
    Zasloff M: Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 84: 5449–5453 (1987).PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • N. T. Keen
    • 1
  1. 1.Department of Plant PathologyUniversity of CaliforniaRiversideUSA

Personalised recommendations