Hydrobiologia

, Volume 230, Issue 1, pp 49–61 | Cite as

Effects of spates on the vertical distribution of the interstitial community

  • Marie-José Dole-Olivier
  • Pierre Marmonier
Article

Abstract

The effect of hydrological variations on the vertical distribution of interstitial organisms was studied in a by-passed channel of the Rhône River(France) in terms of the distortion and recovery of community structure over a 480-day period that included 9 spates. The hypogean and epigean components of the interstitial assemblages were studied, the latter at four depths (50, 100, 150 and 200 cm) within the substratum, during a succession of artificially regulated spates and periods of low flow. Interstitial fauna were obtained with a Bou-Rouch sampler through permanent standpipes at intervals of one, seven and seventeen days after each spate. A strong relationship was demonstrated between disturbance intensity (amplitude and duration of spates) and the magnitude of changes in the vertical distribution of the fauna. Both hypogean and epigean organisms were displaced vertically after each spate, resulting in an increase in the numbers of epigean organisms in interstitial layers. Recovery of vertical distribution of the interstitial fauna to pre-spate conditions, consisted of a decrease of epigean and an increase of hypogean fauna with the substratum, mainly at intermediate sampling depths (100, 150 cm). The effect of spates on community structure and rate of recovery varied in relation to 1) the combination of spate amplitude and duration (i.e. the shape of the discharge pattern), 2) the disturbance regime (i.e. the recent hydrological past) and 3) season (temperature and biological cycle).

Key words

disturbance regime vertical structure distortion recovery spate hypogean fauna hyporheos 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berthelemy, C., 1968. Contribution à la connaissance des Leuctridae (Plecoptères). Ann. Limnol. 4: 175–198.Google Scholar
  2. Blandin, P. & M. Lamotte, 1984. Ecologie des systèmes et aménagement: fondement théorique et principes méthodologiques. In M. Lamotte (ed). Fondements rationnels de l'aménagement du territoire. Masson, Paris: 139–162.Google Scholar
  3. Botosaneanu, L., 1986. Stygofauna mundi. E.J. Brill & Dr W. Backhuys, Leiden: 740.Google Scholar
  4. Bou, C., 1974. fRecherches sur les eaux souterraines. 25. Méthodes de récolte dans les eaux souterraines interstitielles. Ann. Spéléol. 29: 611–619.Google Scholar
  5. Bou, C., 1977. Conséquences écologiques de l'extraction des alluvions récentes dans le cours moyen du Tarn (France). Bull. Ecol. 8: 435–444.Google Scholar
  6. Bou, C., 1979. Etude de la faune interstitielle des alluvions du Tarn. Mise en place d'une station d'étude et résultats préliminaires. Bull. Fed. Tarn Spéléol. Archéol. 16: 117–129.Google Scholar
  7. Bou, C. & R. Rouch, 1967. Un nouveau champ de recherches sur la faune aquatique souterraine. C.R. Acad. Sci. Paris 265: 369–370.Google Scholar
  8. Bretschkko, G. & M. Leichtfried, 1988. Distribution of organic matter and fauna in a second order, alpine Gravel stream (Ritrodat-Lunz study area, Austria). Int. Ver. Ang. Limnol. 23: 1333–1339.Google Scholar
  9. Clifford, H. F., 1982. Effects of periodically disturbing a small area of substratum in a brown-water stream of Alberta, Canada. Freshwat. Invertebr. Biol. 1: 39–47.Google Scholar
  10. Coleman, M. J. & H. B. N. Hynes, 1970. The vertical distribution of the invertebrate fauna in the bed of a stream. Limnol. Oceanogr. 15: 31–40.Google Scholar
  11. Creuzé des Châtelliers, M. & J. L. Reygrobellet, 1990. Interactions between geomorphological processes, benthic and hyporheic communities: first results on a by-passed canal of the French Upper-Rhône River. Regulated Rivers 5: 139–158.Google Scholar
  12. Cushing, C. E. & W. L. Gaines, 1989. Thoughts on recolonization of endorheic cold desert spring-stream. J.N. Am. Benthol. Soc. 8: 277–287.Google Scholar
  13. Danielopol, D. L., 1976. The distribution of the fauna in the interstitial habitats of riverine sediments of the Danube and the Piesting (Austria). Int. J. Speleol. 8: 23–51.Google Scholar
  14. Danielopol, D. L., 1980. The role of the limnologist in ground water studies. Int. Revue ges. Hydrobiol. 65: 777–791.Google Scholar
  15. Danielopol, D. L., 1984. Ecological investigations on the alluvial sediments of the Danube in the Vienna area. A phreatobiological project. Int. Ver. Ang. Limnol. 22: 1755–1761.Google Scholar
  16. Danielopol, D. L., 1989. Groundwater fauna associated with riverine aquifers. J.N. Am. Benthol. Soc. 8: 18–35.Google Scholar
  17. Danielopol, D. L. & G. Hartmann, 1986. Ostracoda. Part I: stygobiont Ostracoda from inland subterranean waters (265–278). Teil II: die marinen Ostracoden der interstitiellen lebensräume. In Stygofauna mundi, L. Botosaneanu (ed.), E. J. Brill/Dr W. Backhuys, Leiden: 279–294.Google Scholar
  18. Darchis, F., 1979. Relations entre la dynamique des fonds du Haut-Rhône français et la structure du peuplement benthique. Thèse de l'Ecole Nationale des Mines, Paris et Université Lyon I: 1–130.Google Scholar
  19. Delamare-Deboutteville, C., 1960. Biologie des eaux souterraines continentales. Hermann, Paris: 1–740.Google Scholar
  20. Delucchi, C. M., 1987. Comparison of community structure among streams with different temporal flow regimes. Can. J. Zool. 66: 579–586.Google Scholar
  21. Delucchi, C. M., 1989. Movement patterns of invertebrates in temporary and permanent streams. Oecologia 78: 199–207.Google Scholar
  22. Dole, M. J., 1983. Le domaine aquatique souterrain de la plaine alluviale du Rhône à l'Est de Lyon. Ecologie des niveaux superieurs de la nappe. Thèse de 3ème cycle, Université Claude Bernard, Lyon I (France): 168 pp.Google Scholar
  23. Dole, M. J., 1985. Le domaine aquatique souterrain de la plaine alluviale du Rhône à l'est de Lyon, 2. Structure verticale des peuplements des niveaux supérieurs de la nappe. Stygologia 1: 270–291.Google Scholar
  24. Dole, M. J. & D. Chessel, 1986. Stabilité physique et biologique des milieux interstitiels. Cas de deux stations du Haut Rhône. Ann. Limnol. 22: 69–81.Google Scholar
  25. Dole, M. J. & N. Coineau, 1987. L'Isopode Microcharon (Crustacea Isopoda) abondant dans les eaux interstitielles de l'Est lyonnais. M. reginae n.sp., écologie et biogǵraphie. Stygologia 3 (3): 200–216.Google Scholar
  26. Gaschignard, O., 1984. Impact d'une crue sur les macroinvertébrés benthiques d'un bras du Rhône. Int. Verein. Ang. Limnol. 22: 1997–2001.Google Scholar
  27. Gaschignard, O. & A. Berly, 1987. Impact of large discharge fluctuations on the macroinvertebrate populations downstream of a dam. In ‘regulated streams’, J. F. Craig and J. B. Kemper (eds.) Plenum Publishing Corporation: 145–157.Google Scholar
  28. Giberson, D. J. & R. J. Hall, 1988. Seasonal variation in faunal distribution within the sediment of a Canadian Shield stream, with emphasis on responses to spring floods. Can. J. Fish. aquat. Sci. 45: 1994–2002.Google Scholar
  29. Gibert, J., M. J. Dole-Olivier, P. Marmonier & P. Vervier, 1990. Groundwater ecotones. In Ecology and Management of Aquatic-Terrestrial Ecotones, Naiman, R. J. & H. Déchamps (eds). Man and the Biosphere Series. Unesco, Paris & Parthenon Publishing Carnforth: 199–225.Google Scholar
  30. Ginet, R., 1982. Structure et fonctionnement des écosystèmes du Haut Rhône françs: XXIV. Les Amphipodes des eaux interstitielles en amont de Lyon. Polsk, Arch. Hydrobiol. 29: 231–237.Google Scholar
  31. Ginet, R., 1983. Les Niphargus (Amphipodes souterrains) de la région de Lyon (France). Observations biogǵraphiques, systématiques et écologiques. Mèm. Biospéol. X: 179–187.Google Scholar
  32. Ginet, R. & V. Decou, 1977. Initiation à la biologie et à l'écologie souterraines. Delarge, Paris, 204 p.Google Scholar
  33. Godbout, L. & H. B. N. Hynes, 1982. The three dimensional distribution of the fauna in a single riffle in a stream in Ontario. Hydrobiologia 97: 87–96.Google Scholar
  34. Grimm, N. B. & G. Fischer, 1989. Stability of periphyton and macroinvertebrates to disturbance by flash floods in a desert stream. J. North Am. Benthol. Soc. 8/4: 293–307.Google Scholar
  35. Jakobi, H., 1954. Biologie, Entwicklungsgeschichte und Systematik von Bathynella natans Vej. Zool. Jahr. Abt. system, 1–53.Google Scholar
  36. Jongman, R. H. G., C. J. F. Ter Braak & O. F. R. Van Tongeren, 1987. Data analysis in community and landscape ecology. Pudoc, Wageningen.Google Scholar
  37. Hynes, H. B. N., 1983. Ground water and Stream Ecology. Hydrobiologia 100: 93–99.Google Scholar
  38. Lake, P. S., T. J. Doeg & R. Marchant, 1989. Effects of multiple disturbance on macroinvertebrate communities in the Acheron River, Victoria. Aust. J. Ecol. 14: 507–514.Google Scholar
  39. Marmonier, P., 1988. Biocénoses interstitielles et circulation des eaux dans le sous-écoulement d'un chenal aménagé du Haut Rhône français. Thèse de doctorat, Université Claude Bernard, Lyon I (France): T1, 161 p., T2, 108 p.Google Scholar
  40. Marmonier, P. & M. J. Dole, 1986. Les Amphipodes des sédiments d'un bras court-circuité du Rhône: logique de répartition et réaction aux crues. Sciences de l'eau 5: 461–486.Google Scholar
  41. Marmonier, P. & M. Creuzé des Châtelliers, 1991. Effects of spates on interstitial assemblages of the Rhône River. Importance of spatial heterogeneity. Hydrobiologia 210: 243–251.Google Scholar
  42. Molles, M. C., Jr., 1985. Recovery of a stream invertebrate community from a flash flood in Tesuque Creek, New Mexico. South. Nat. 30/2: 279–287.Google Scholar
  43. Orghidan, T., 1959. Ein neuer Lebensraum des unterirdischen Wassers: Der hyporheische Biotop. Arch. Hydrobiol. 55: 392–414.Google Scholar
  44. Pennak, R. W. & J. V. Ward, 1986. Interstitial faunal communities of the hyporheic and adjacent groundwater biotopes of a Colorado mountain stream. Arch. Hydrobiol. suppl. 74: 356–396.Google Scholar
  45. Poinsart, D., J. P. Bravard & M. C. Caclin-Brüser, 1990. Profil en long et granulométrie du lit des cours d'eau amén-agés: l'exemple du canal de Miribel (Haut-Rhône). Rev. Géogr. Lyon 64: 240–251.Google Scholar
  46. Puig, M. A., F. Sabater & J. Malo, 1990. Benthic and hyporheic faunas of mayflies and stoneflies in the Ter River basin (NE Spain). In Mayflies and stoneflies. I. C. Campbel (ed.). Kluwer Academic Publishers: 255–258.Google Scholar
  47. Reice, S. R., 1984. The impact of disturbance frequency on the structure of a lotic riffle community. Int. Ver. Ang. Limnol. 22: 1906–1910.Google Scholar
  48. Resh, V. H., A. V. Brown, A. P. Covich, M. E. Gurtz, H. W. Li, G. W. Minshall, S. R. Reice, A. L. Sheldon, J. B. Wallace & R. C. Wissmar, 1988. The role of disturbance in stream ecology. J. N. Am. Benthol. Soc. 7: 433–455.Google Scholar
  49. Robinson, C. T. & G. W. Minshall, 1986. Effects of disturbance frequency on stream benthic community structure in relation to canopy cover and season. J. N. Am. Benthol. Soc. 5: 237–248.Google Scholar
  50. Rouch, R., 1968. Contribution à la connaissance des Harpacticoïdes hypogés (Crustacés Copépodes). Ann. speleo. 23/1: 5–167.Google Scholar
  51. Rouch, R., 1968. Sur la répartition spatiale des Crustacés dans le sous-écoulement d'un ruisseau des Pyrénées. Ann. Limnol. 24: 231–234.Google Scholar
  52. Rykiel, E. J., Jr., 1985. Towards a definition of ecological disturbance. Aust. J. Ecol. 10: 361–365.Google Scholar
  53. Scrimgeour, G. J., R. J. Davidson & J. M. Davidson, 1988. Recovery of benthic macroinvertebrate and epilithic communities following a large flood, in an unstable, braided, New Zealand River. New Zealand J. Mar. Freshwat. Res. 22: 337–344.Google Scholar
  54. New Zealand River. New Zealand J. Mar. Freshwat. Res. 22: 337–344.Google Scholar
  55. Scrimgeour, G. J. & M. J. Winterbourn, 1989. Effects of floods on epilithon and benthos macroinvertebrate populations in an unstable New Zealand River. Hydrobiologia 171: 33–44.Google Scholar
  56. Thioulouse, J., 1989. Statistical analysis and graphical display of multivariate data on the Macintosh. Comput. Applic. Biosci. 5(4): 287–292.Google Scholar
  57. Stanford, J. A. & A. R. Gaufin, 1974. Hyporheic Communities of Two Montana Rivers. Science 185: 700–702.Google Scholar
  58. Stanford, J. A. & J. V. Ward, 1988. The hyporheic habitat of river ecosystem. Nature 6185: 64–66.CrossRefGoogle Scholar
  59. Vandel, A., 1964. Biospélogie. La biologie des animaux cavernicoles. Gauthiers-Villars, Paris, 619 p.Google Scholar
  60. White, P. S. & S. T. A. Pickett, 1985. Natural disturbance and patch dynamics: an introduction. In: The Ecology of natural disturbance and patch dynamics, Pickett, S. T. A. & P. S. White (eds) Academic Press Inc: 3–13.Google Scholar
  61. Williams, D. D., 1977. Movements of benthos during the recolonization of temporary streams. Oikos 29: 306–312.Google Scholar
  62. Williams, D. D., 1981. Migrations and distributions of stream benthos. In: Perspectives in running water ecology, M. A. Lock & D. D. Williams (eds). Plenum Press, New York: 155–208.Google Scholar
  63. Williams, D. D., 1984. The hyporheic zone as a habitat for aquatic insects and associated arthropods. In The Ecology of Aquatic Insects, V. H. Resh & D. M. Rosenberg (eds). Praeger publishers, New York: 430–455.Google Scholar
  64. Williams, D. D., 1989. Towards a biological and chemical definition of the hyporheic zone in two Canadian rivers. Freshwat. Biol. 22: 189–208.Google Scholar
  65. Williams, D. D. & H. B. N. Hynes, 1974. The occurrence of benthos deep in the substratum of a stream. Freshwat. Biol. 4: 233–256.Google Scholar
  66. Williams, D. D. & H. B. N. Hynes, 1976. The recolonization mechanisms of stream benthos. Oikos 27: 265–272.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Marie-José Dole-Olivier
    • 1
  • Pierre Marmonier
    • 1
  1. 1.U.R.A. CNRS No 367 Ecologie des eaux douces, Hydrobiologie et Ecologie SouterrainesUniversité Claude BernardVilleurbanne cedexFrance

Personalised recommendations