Advertisement

Plant Molecular Biology

, Volume 16, Issue 5, pp 787–795 | Cite as

Characterization of a maize cDNA that complements an enolase-deficient mutant of Escherichia coli

  • Shailesh K. Lal
  • Scott Johnson
  • Tyrrell Conway
  • Philip M. Kelley
Article

Abstract

A cDNA encoding maize enolase (2-phospho-D-glycerate hydrolase) was purified by functional genetic complementation using an enolase deficient mutant of Escherichia coli, DF261. This cDNA, pZM245, was characterized by restriction mapping and DNA sequence analysis. The cDNA contained an open reading frame encoding a protein of 446 amino acids with a high degree of similarity to enolase sequences from other organisms (72% identity to yeast enolase and 82% identity to human enolase). The pZM245 contains a correctly positioned consensus prokaryotic translation initiation sequence. The specific activity of enolase in maize increases to about twice its initial level after 48 hours of anaerobiosis. Northern-blot analysis showed a five-fold anaerobic induction in enolase mRNA, while heat shock or cold shock increased enolase mRNA levels only slightly. Southern-blot analysis of maize genomic DNA indicated that there is one copy of the pZM245 hybridizing sequence per haploid genome in maize.

Key words

anaerobic stress enolase gene regulation maize 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bailey-Serres J, Kloeckener-Gruissem B, Freeling M: Genetic and molecular approaches to the study of the anaerobic response and tissue specific gene expression in maize. Plant Cell Environ 11: 351–357 (1988).Google Scholar
  2. 2.
    Bishop JG, Corces VG: The nucleotide sequence of a Drosophila melanogaster enolase gene. Nucleic Acids Res 18: 191–191 (1990).PubMedGoogle Scholar
  3. 3.
    Brumbaugh JA, Middendorf LR, Grone DL, Ruth JL: Continuous on-line DNA sequencing using oligonucleotide primers with multiple fluorophores. Proc Natl Acad Sci USA 85: 5610–5614 (1988).PubMedGoogle Scholar
  4. 4.
    DasSarma S, Tischer E, Goodman HM: Plant glutamine synthetase complements a gln A mutation in Escherichia coli. Science 232: 1242–1244 (1986).PubMedGoogle Scholar
  5. 5.
    Dennis ES, Gerlach WL, Pryor AJ, Bennetzen JL, Inglis A, Llewellyn D, Sachs MM, Ferl RJ, Peacock WJ: Molecular analysis of the alcohol dehydrogenase (Adhl) gene of maize. Nucleic Acids Res 12: 3983–4000 (1984).PubMedGoogle Scholar
  6. 6.
    Devereux J, Haeberli P, Smithies O: A comprehensive sequence analysis programs for the VAX. Nucleic Acids Res 12: 5610–5614 (1984).Google Scholar
  7. 7.
    Freeling M: Simultaneous induction by anaerobiosis or 2,4-D of multiple enzymes specified by two unlinked genes: Differential Adh1-Adh2 expression in maize. Mol Gen Genet 127: 215–227 (1973).CrossRefPubMedGoogle Scholar
  8. 8.
    Giallongo A, Feo S, Moore R, Croce CM, Showe LC: Molecular cloning and nucleotide sequence of a full-length cDNA for human alpha enolase. Proc Natl Acad Sci USA 83: 6741–6745 (1986).PubMedGoogle Scholar
  9. 9.
    Hake S, Kelley PM, Taylor WC, Freeling M: Coordinate induction of alcohol dehydrogenase I, aldolase, and other anaerobic RNAs in maize. J Biol Chem 260: 5050–5054 (1985).PubMedGoogle Scholar
  10. 10.
    Henikoff S: Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28: 351–359 (1984).CrossRefPubMedGoogle Scholar
  11. 11.
    Hershey JWB: Protein Synthesis. In: Neidhardt FC (ed) Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 613–647. American Society for Microbiology, Washington, DC (1987).Google Scholar
  12. 12.
    Hillman JD, Fraenkel DG: Glyceraldehyde 3-phosphate dehydrogenase mutants of Escherichia coli. J Bact 122: 1175–1179 (1975).PubMedGoogle Scholar
  13. 13.
    Hoffman NE, Bent AF, Hanson AD: Induction of lactate dehydrogenase isozymes by oxygen deficit in barley root tissue. Plant Physiol 82: 658–663 (1986).Google Scholar
  14. 14.
    Holland MJ, Holland JP, Thill GP, Jackson KA: The primary structure of two yeast enolase genes: Homology between the 5 prime noncoding flanking regions of yeast enolase and glyceraldehyde 3 phosphate dehydrogenase genes. J Biol Chem 256: 1385–1395 (1981).PubMedGoogle Scholar
  15. 15.
    Hondred D, Hanson A: Hypoxically inducible barley lactate dehydrogenase: cDNA cloning and molecular analysis. Proc Natl Acad Sci USA 87: 7300–7304 (1990).PubMedGoogle Scholar
  16. 16.
    Iida H, Yahara I: Yeast heat-shock protein of Mr 48,000 is an isoprotein of enolase. Nature 315: 688–690 (1985).Google Scholar
  17. 17.
    Joshi CP: An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Res 15: 6643–6653 (1987).PubMedGoogle Scholar
  18. 18.
    Junghans H, Metzlaff H: A simple and rapid method for the preparation of total plant DNA. Biotechniques 8: 176 (1990).PubMedGoogle Scholar
  19. 19.
    Kelley PM: Maize pyruvate decarboxylase mRNA is induced anaerobically. Plant Mol Biol 13: 213–222 (1989).PubMedGoogle Scholar
  20. 20.
    Kelley PM, Freeling M: Anaerobic expression of maize fructose-1,6-diphosphate aldolase. J Biol Chem 259: 14180–14183 (1984).PubMedGoogle Scholar
  21. 21.
    Kelley PM, Tolan DR: The complete amino acid sequence for the anaerobically induced aldolase from maize derived from cDNA clones. Plant Physiol 82: 1076–1080 (1986).Google Scholar
  22. 22.
    Lutcke HA, Chow KC, Mickel FS, Moss KA, Kern HF, Scheele GA: Selection of AUG initiation codons differs in plants an animals. EMBO J 6: 43–48 (1987).PubMedGoogle Scholar
  23. 23.
    Maitra PK, Lobo Z: A kinetic study of glycolytic enzyme synthesis in yeast. J Biol Chem 246: 475–488 (1971).PubMedGoogle Scholar
  24. 24.
    Martinez P, Martin W, Cerff R: Structure, evolution and anaerobic regulation of a nuclear gene encoding cytosolic glyceraldehyde-3-phosphate dehydrogenase from maize. J Mol Biol 208: 551–565 (1989).PubMedGoogle Scholar
  25. 25.
    Rave N, Crkvenjakov R, Boedtker H: Identification of procollagen mRNAs transferred to diazobenzyloxymethyl paper from formaldehyde agarose gels. Nucleic Acids Res 6: 3559–3567 (1979).PubMedGoogle Scholar
  26. 26.
    Ricard B, Rivoal J, Pradet A: Rice cytosolic glyceraldehyde 3-phosphate dehydrogenase contains two subunits differentially regulated by anaerobiosis. Plant Mol Biol 12: 131–139 (1989).Google Scholar
  27. 27.
    Russell DA, Sachs MM: Differential expression and sequence analysis of the maize glyceraldehyde-3-phosphate dehydrogenase gene family. Plant Cell 1: 793–803 (1989).CrossRefPubMedGoogle Scholar
  28. 28.
    Sachs MM, Freeling M, Okimoto R: The anaerobic proteins of maize. Cell 20: 761–767 (1980).CrossRefPubMedGoogle Scholar
  29. 29.
    Segil N, Shrutkowski A, Dworkin MB, Dworkin-Rastl E: Enolase isoenzymes in adult and developing Xenopus laevis and characterization of a cloned enolase sequence. Biochem J 251: 31–39 (1988).PubMedGoogle Scholar
  30. 30.
    Shine J, Dalgarno L: Determinant of cistron specificity in bacterial ribosomes. Nature 254: 34–38 (1975).PubMedGoogle Scholar
  31. 31.
    Snustad DP, Hunsperger JP, Chereskin BM, Messing J: Maize glutamine synthetase cDNAs: isolation by direct genetic selection in Escherichia coli. Genetics 120: 1111–1124 (1988).PubMedGoogle Scholar
  32. 32.
    Spring TG, Wold F: The purification and characterization of Escherichia coli enolase. J Biol Chem 246: 6797–6802 (1971).PubMedGoogle Scholar
  33. 33.
    Springer B, Werr W, Starlinger P, Bennett DC, Zokolica M, Freeling M: The Shrunken gene on chromosome 9 of Zea mays L. is expressed in various plant tissues and encodes an anaerobic protein. Mol Gen Genet 205: 461–468 (1986).Google Scholar
  34. 34.
    Straus D, Gilbert W: Chicken triosephosphate isomerase complements an Escherichia coli deficiency. Proc Natl Acad Sci USA 82: 2014–2018 (1985).PubMedGoogle Scholar
  35. 35.
    Vieira J, Messing J: The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19: 259–268 (1982).CrossRefPubMedGoogle Scholar
  36. 36.
    Weng M, Makaroff CA, Zalkin H: Nucleotide sequence of Escherichia coli pyr G encoding CTP synthetase. J Biol Chem 261: 5568–5574 (1986).PubMedGoogle Scholar
  37. 37.
    Wistow GJ, Lietman T, Willaims LA, Stapel SO, de-Jong WW, Horwitz J, Piatigorsky J: Tau-crystallin/alphaenolase: one gene encodes both an enzyme and a lens structural protein. J Cell Biol 107: 2729–2736 (1988).CrossRefPubMedGoogle Scholar
  38. 38.
    Zack CD, Ferl RJ, Hannah LC: DNA sequence of a shrunken allele of maize: evidence for visitation by insertional sequences. Maydica 31: 5–16 (1986).Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Shailesh K. Lal
    • 1
  • Scott Johnson
    • 1
  • Tyrrell Conway
    • 1
  • Philip M. Kelley
    • 1
  1. 1.School of Biological SciencesUniversity of NebraskaLincoln

Personalised recommendations