Plant Molecular Biology

, Volume 25, Issue 6, pp 989–994 | Cite as

The small, versatilepPZP family ofAgrobacterium binary vectors for plant transformation

  • Peter Hajdukiewicz
  • Zora Svab
  • Pal Maliga
Research Article

Abstract

The newpPZP Agrobacterium binary vectors are versatile, relatively small, stable and are fully sequenced. The vectors utilize the pTiT37 T-DNA border regions, the pBR322bom site for mobilization fromEscherichia coli toAgrobacterium, and the ColE1 and pVS1 plasmid origins for replication inE. coli and inAgrobacterium, respectively. Bacterial marker genes in the vectors confer resistance to chloramphenicol (pPZP100 series) or spectinomycin (pPZP200 series), allowing their use inAgrobacterium strains with different drug resistance markers. Plant marker genes in the binary vectors confer resistance to kanamycin or to gentamycin, and are adjacent to the left border (LB) of the transferred region. A lacZ α-peptide, with the pUC18 multiple cloning site (MCS), lies between the plant marker gene and the right border (RB). Since the RB is transferred first, drug resistance is obtained only if the passenger gene is present in the transgenic plants.

Key words

Agrobacterium binary vectors gentamycin resistance kanamycin resistance tobacco 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    An G: Development of plant promoter expression vectors and their use for analysis of differential activity of nopaline synthase promoter in transformed tobacco tissue. Plant Physiol 81: 86–91 (1986).Google Scholar
  2. 2.
    Becker D, Kemper E, Schell J, Masterson R: New plant binary vectors with selectable markers located proximal to the left T-DNA border. Plant Mol Biol 20: 1195–1197 (1992).Google Scholar
  3. 3.
    Bevan M: BinaryAgrobacterium vectors for plant transformation. Nucl Acids Res 12: 8711–8721 (1984).Google Scholar
  4. 4.
    Bevan MW, Flavell RB, Chilton MD: A chimeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304: 184–187 (1983).Google Scholar
  5. 5.
    Cado IC: Molecular mechanisms of crown gall tumorigenesis. Crit Rev Plant Sci 10: 1–32 (1991).Google Scholar
  6. 6.
    Cangelosi GA, Best EA, Martinetti G, Nester EW: Genetic analysis ofAgrobacterium. Meth Enzymol 204: 384–397 (1991).Google Scholar
  7. 7.
    Carrer H, Hockenberry TN, Svab Z, Maliga P: Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol Gen Genet 241: 49–56 (1993).Google Scholar
  8. 8.
    Carrer H, Staub JM, Maliga P: Gentamycin resistance inNicotiana conferred by AAC(3)-I, a narrow substrate specificity acetyltransferase. Plant Mol Biol 17: 301–303 (1991).Google Scholar
  9. 9.
    Chambers SP, Prior SE, Barstow DA, Minton NP: The pMTL nic- cloning vectors. Improved pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing. Gene 68: 139–149 (1988).Google Scholar
  10. 10.
    Chinault AC, Blakesley VA, Roessler E, Willis DG, Smith CA, Cook RG, Fenwick RG: Characterization of transferable plasmids fromShigella flexneri 2a that confer resistance to trimethoprim, streptomycin, and sulfonamides. Plasmid 15: 119–131 (1986).Google Scholar
  11. 11.
    deFramond A, Barton K, Chilton MD: Mini-Ti: A vector strategy for plant genetic engineering. Bio/technology 1: 262–272 (1983).Google Scholar
  12. 12.
    Deblaere R, Reynaerts A, Hofte H, Hernalsteens JP, Leemans J, VanMontagu M: Vectors for cloning in plant cells. Meth Enzymol 153: 277–292 (1987).Google Scholar
  13. 13.
    Ditta G, Stanfield S, Corbin D, Helinski DR: Broad host range cloning system for gram negative bacteria: construction of a gene bank ofRhizobium meliloti. Proc Natl Acad Sci USA 77: 7347–7351 (1980).Google Scholar
  14. 14.
    Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry YS, Galluppi GR, Goldberg SB, Hoffmann NL, Soo SC: Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80: 4803–4807 (1983).Google Scholar
  15. 15.
    Herrera-Estrella L, DeBlock M, Messens E, Hernalstens JP, VanMontagu M, Schell J: Chimeric genes as dominant selectable markers in plant cells. EMBO J 2: 987–995 (1993).Google Scholar
  16. 16.
    Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA: A binary plant vector strategy based on separation of vir- and T-region of theAgrobactrium tumefaciens Ti plasmid. Nature 303: 179–180 (1983).Google Scholar
  17. 17.
    Hollingshead S, Vapnek D: Nucleotide sequence analysis of a gene encoding a streptomycin-spectinomycin adenyltransferase. Plasmid 13: 17–30 (1985).Google Scholar
  18. 18.
    Holsters M, deWaele D, Depicker A, Messens E, VanMontagu M, Schell J: Transfection and transformation ofA. tumefaciens. Mol Gen Genet 163: 181–187 (1978).Google Scholar
  19. 19.
    Hood EE, Helmer GL, Fraley RT, Chilton MD: The hypervirulance ofAgrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bact 168: 1291–1301 (1986).Google Scholar
  20. 20.
    Hooykaas PJJ, Schilperoort RA:Agrobacterium and plant genetic engineering. Plant Mol Biol 19: 15–38 (1992).Google Scholar
  21. 21.
    Horsch RB, Fry JE, Hoffman NL, Eicholtz D, Rogers SD, Fraley RT: A simple and general method for transferring genes into plants. Science 227: 1229–1231 (1985).Google Scholar
  22. 22.
    Itoh Y, Haas D: Cloning vectors derived from thePseudomonas plasmid pVS1. Gene 36: 27–36 (1985).Google Scholar
  23. 23.
    Itoh Y, Watson JM, Haas D, Leisinger T: Genetic and molecular characterization of thePseudomonas plasmid pVS1. Plasmid 11: 206–220 (1984).Google Scholar
  24. 24.
    Jefferson RA, Kavanagh TA, Bevan MW: GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3907 (1987).Google Scholar
  25. 25.
    Jones JDG, Shlumukov L, Carland F, English J, Scofield SR, Bishop GJ, Harrison K: Effective vectors for transformation, expression of heterologous genes, and assaying transposon excision in transgenic plants. Transgenic Res 1: 285–297 (1992).Google Scholar
  26. 26.
    Marton L, Browse J: Facile transformation ofArabidopsis. Plant Cell Rep 10: 235–239 (1991).Google Scholar
  27. 27.
    Peralta EG, Hellmiss R, Ream W: Overdrive, a T-DNA transmission enhancer on theA. tumefaciens tumour-inducing plasmid. EMBO J 5: 1137–1142 (1986).Google Scholar
  28. 28.
    Prentki P, Karch F, Iida S, Meyer J: The plasmid cloning vector pBR325 contains a 482 base-pair long inverted duplication. Gene 14: 289–299 (1981).Google Scholar
  29. 29.
    Timmermans MCP, Maliga P, Vieira J, Messing J: The pFF plasmids: cassettes utilising CaMV sequences for expression of foreign genes in plants. J Biotechnol 14: 333–344 (1990).Google Scholar
  30. 30.
    Watson N: A new revision of the sequence of plasmid pBR322. Gene 70: 399–403 (1988).Google Scholar
  31. 31.
    Yadav NS, Vanderleyden J, Bennet DR, Barnes WM, Chilton MD: Short direct repeats flank the T-DNA on a nopaline Ti plasmid. Proc Natl Acad Sci USA 79: 6322–6326 (1982).Google Scholar
  32. 32.
    Yanisch-Perron C, Vieira J, Messing J: Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp 18 and pUC19 vectors. Gene 33: 103–119 (1985).Google Scholar
  33. 33.
    Zambryski P, Depicker A, Kruger K, Goodman HM: Tumor induction byAgrobacterium tumefaciens: analysis of the boundaries of T-DNA. J Mol Appl Genet 1: 361–370 (1982).Google Scholar
  34. 34.
    Zambryski PC: Chronicles from theAgrobacterium plant cell DNA transfer story. Annu Rev Plant Physiol Plant Mol Biol 43: 465–490 (1992).Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Peter Hajdukiewicz
    • 1
  • Zora Svab
    • 1
  • Pal Maliga
    • 1
  1. 1.Waksman Institute, RutgersThe State University of New JerseyPiscatawayUSA

Personalised recommendations