Plant Molecular Biology

, Volume 24, Issue 6, pp 941–948 | Cite as

Structure and expression of a cDNA encoding a histone H2A from Euglena gracilis

  • Agnes Saint-Guily
  • Marie-Luce Schantz
  • Rodolphe Schantz
Research Article


Screening of a λgt11 cDNA expression library of Euglena gracilis with antibodies directed against histones H2 from maize resulted in the isolation of a full-length cDNA for a histone H2A. The open-reading frame of 408 bp corresponded to a protein of 136 amino acid residues (14 kDa). Despite the presence of a poly(A) tail, which is typical of plant histone mRNA but not of animal histone mRNA, the size of the deduced protein and its percentage of homology were closer to animal histone H2As than to plant or lower eukaryotic histone H2A.

Sequence alignment revealed that the Euglena H2A protein was characterized by a shorter C-terminus and a N-terminus which extended 10 residues past the animal H2A.

In contrast to other organisms studied, the expression of the Euglena H2A gene appeared to be almost constant during an entire life-cycle and presented no cell-stage-specific expression during development. Similar results are obtained for another histone gene, H3, and for β-tubulin.

Regulation of gene expression at a post-transcriptional level seems to be a general feature of Euglena.

Key words

cell-cycle Euglena gracilis post-transcriptional regulation histones H2A H3 β-tubulin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bertaux O, Valancia R, Magnaval R: The nucleus. In: Buetow D (ed) Biology of Euglena, vol 4, pp. 137–245. Academic Press, London (1989).Google Scholar
  2. 2.
    Bre M-H, Delpech S, Champagne M, Mazen A, Lefort-Tran M: Analyse des histones et de l'ADN nucléosomal de l'Euglène normale et carencée en vitamine B12 CR Acad Sci Paris 290: 93–96 (1980).Google Scholar
  3. 3.
    Chaubet N, Clement B, Philipps G, Gigot C: Organ specific expression of different histone H3 and H4 gene subfamilies in developing and adult maize. Plant Mol Biol 17: 935–940 (1991).Google Scholar
  4. 4.
    Choe J, Kolodrubetz D, Grunstein M: The two histone Yeast H2A genes encode similar protein subtypes. Proc Natl Acad Sci USA 79: 1484–1487 (1982).Google Scholar
  5. 5.
    Cleveland DW: Molecular mechanisms controlling tubulin synthesis. In: Shay JW (ed) Cell and Molecular Biology of the Cytoskeleton, pp. 203–225. Plenum Publishing Corp, New York (1986).Google Scholar
  6. 6.
    Cook JR: Photosynthetic activity during the division cycle in synchronized Euglena gracilis. Plant Physiol 41: 821–825 (1966).Google Scholar
  7. 7.
    D'Andrea R, Harvey R, Wells JRE: Vertebrate histone genes: nucleotide sequence of a chicken H2A gene and regulatory flanking sequences. Nucl Acids Res 9: 3119–3128 (1981).Google Scholar
  8. 8.
    Edmunds LNJr: Studies on synchronously dividing cultures of Euglena gracilis. II. Pattern of biosynthesis during the cell cycle. J Cell Comp Physiol 66: 159–182 (1965).Google Scholar
  9. 9.
    Frayssinet C, Bertaux O, Valencia R: Aspects structuraux du noyau et du nucleole chez Euglena gracilis au cours du cycle cellulaire. Coll Int CNRS 240: 291–296 (1974).Google Scholar
  10. 10.
    Houlne G, Schantz R: Molecular analysis of the transcripts encoding the light harvesting chlorophyll a/b protein in Euglena gracilis: unusual size of the mRNA. Curr Genet 12: 611–616 (1987).Google Scholar
  11. 11.
    Houlne G, Schantz R: Characterisation of cDNA sequences for LHCl apoproteins in Euglena gracilis: the mRNA encodes a large precursor containing several consecutive divergent polypeptides. Mol Gen Genet 213: 479–486 (1988).Google Scholar
  12. 12.
    Houlne G, Schantz R: Expression of polyproteins in Euglend. Crit Plant Sci 12: 1–17 (1993).Google Scholar
  13. 13.
    Jardine NJ, Leaver JL: The fractionation of histones isolated from Euglena gracilis. Biochem J 169: 103–111 (1978).Google Scholar
  14. 14.
    Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 435–444 (1970).Google Scholar
  15. 15.
    Lefebvre PA, Rosenbaum JL: Regulation of the synthesis and assembly of ciliary and flagellar proteins during regeneration. Annu Rev Cell Biol 2: 517–546 (1986).Google Scholar
  16. 16.
    Maxson R, Cohn R, Kedes L, Mohun T: Expression and organisation of histone genes. Annu Rev Genet 17: 239–277 (1983).Google Scholar
  17. 17.
    Montandon PE, Stutz E: Structure and expression of the Euglena gracilis nuclear gene coding for the translation elongation factor EF-1a. Nucl Acids Res 18: 75–82 (1990).Google Scholar
  18. 18.
    Müller K, Lindauer A, Brüderlein M, Schmitt R: Organisation and transcription of Volvox histone-encoding genes: similarities between algal and animal genes. Gene 93: 167–175 (1990).Google Scholar
  19. 19.
    Nakayama T, Ohtsubo N, Mikami K, Kawata T, Tabata T, Kanazawa H, Iwabuchi M. Cis-acting sequences that modulate transcription of wheat histones H3 gene and 3′ processing H3 premature mRNA. Plant Cell Physiol 30: 825–832 (1989).Google Scholar
  20. 20.
    Osley MA: The regulation of histone synthesis in the cell cycle. Annu Rev Biochem 60: 827–861 (1991).Google Scholar
  21. 21.
    Sachs AB, Davis RW: Translation initiation and ribosomal biogenesis: involvement of a putative rRNA helicase and RPL 46. Science 247: 1077–1079 (1990).Google Scholar
  22. 22.
    Schantz R, Salaun JP, Schantz ML, Duranton H: Etude de la composition en acides aminés libres d'Euglena gracilis en culture synchrone à la lumière et à l'obscurité. Physiol Végét 12: 133–151 (1972).Google Scholar
  23. 23.
    Schantz R, Schantz ML, Duranton H: Changes in amino-acid and peptide composition of Fuglena gracilis cells during chloroplast development. Plant Sci Lett 5: 313–324 (1975).Google Scholar
  24. 24.
    Schantz ML, Schantz R: Sequence of a cDNA encoding β tubulin from Euglena gracilis. Nucl Acids Res 16: 6787 (1989).Google Scholar
  25. 25.
    Sittman DB, Graves RA, Martluff WF: Histone mRNA concentrations are regulated the level of transcription and mRNA degradation. Proc Nat Acad Sci USA 80: 1849–1853 (1983).Google Scholar
  26. 26.
    Spiker S, Weisshaar B, Da Costa e Silva O, Hahlbrock K: Sequence of a histone H2A cDNA from parsley. Nucl Acids Res 18: 5897 (1990).Google Scholar
  27. 27.
    Stein GS, Stein GL, Martzluff WF: Histones Genes: Structure, Organisation and Regulation. John Wiley, New York, 494 pp. (1984).Google Scholar
  28. 28.
    Tessier LH, Keller ML, Chan R, Fournier R, Weil JH, Imbault P: Short leader sequences may be transferred from small RNAs to premature mRNAs by trans splicing in Euglena. EMBO J 10: 2621–2625 (1991).Google Scholar
  29. 29.
    Weiss C, Houlne G, Schantz ML, Schantz R: Photoregulation of the synthesis of chloroplast membrane proteins in Euglena gracilis. J Plant Physiol 133: 521–528 (1988).Google Scholar
  30. 30.
    Wells D, McBride C: A comprehensive compilation and alignment of histones and histone genes. Nucl Acids Res 17: 311–346 (1989).Google Scholar
  31. 31.
    Wu RS, Panusz HT, Hatch CL, Bonner WM: Histones and their modifications. Crit Rev Biochem 20: 201–263 (1986).Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Agnes Saint-Guily
    • 1
  • Marie-Luce Schantz
    • 2
  • Rodolphe Schantz
    • 2
  1. 1.Physlologie et Génétique végétalesUniversité Blaise PascalClermont-Ferrand cédex 1France
  2. 2.Institut de Biologie Moleculaire des PlantesStrasbourgFrance

Personalised recommendations